Gülmez Temür, Burcu
Loading...
Name Variants
Gülmez Temür,B.
Gülmez Temür, Burcu
Gulmez Temur,B.
B., Gulmez Temur
Gülmez Temür B.
G. T. Burcu
Burcu Gülmez Temür
Temur B.
G.T.Burcu
B.,Gulmez Temur
Gulmez Temur,Burcu
B.,Gülmez Temür
B., Gülmez Temür
Gulmez Temur, Burcu
G., Burcu
Burcu, Gulmez Temur
Burcu, Gülmez Temür
G.,Burcu
Temur, Burcu Gulmez
Temür, Burcu Gülmez
Temur, Burcu Guelmez
Gülmez Temür, Burcu
Gulmez Temur,B.
B., Gulmez Temur
Gülmez Temür B.
G. T. Burcu
Burcu Gülmez Temür
Temur B.
G.T.Burcu
B.,Gulmez Temur
Gulmez Temur,Burcu
B.,Gülmez Temür
B., Gülmez Temür
Gulmez Temur, Burcu
G., Burcu
Burcu, Gulmez Temur
Burcu, Gülmez Temür
G.,Burcu
Temur, Burcu Gulmez
Temür, Burcu Gülmez
Temur, Burcu Guelmez
Job Title
Profesör Doktor
Email Address
burcu.temur@atilim.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output
14
Articles
12
Citation Count
26
Supervised Theses
1
14 results
Scholarly Output Search Results
Now showing 1 - 10 of 14
Article Citation Count: 1A short note on permutation trinomials of prescribed type(Taylor & Francis inc, 2020) Akbal, Yıldırım; Temur, Burcu Gulmez; Gülmez Temür, Burcu; MathematicsWe show that there are no permutation trinomials of the form hox 1/4 x5 ox5oq1 xq1 1 over Fq2 where q is not a power of 2. Together with a result of Zha, Z., Hu, L., Fan, S., hox permutes Fq2 if q 1/4 2k where k 2 omod 4, this gives a complete classification of those q's such that hox permutes F-q(2).Master Thesis Sonlu cisimler üzerinde permutasyon polinomları(2017) Gülmez Temür, Burcu; Temür, Burcu Gülmez; MathematicsBu tezde sonlu cisimlerdeki permutasyon polinomları uzerine c¸alıs¸tık. Sonlu cisimler ¨ uzerinde tanımlanmıs¸ bazı permutasyon polinom tiplerinin olus¸turulması ve sınıflandı- ¨ rılması ile ilgili son zamanlarda yapılmıs¸ birtakım aras¸tırma sonuc¸larını derledik.Article Citation Count: 0Some permutations and complete permutation polynomials over finite fields(Tubitak Scientific & Technological Research Council Turkey, 2019) Gülmez Temür, Burcu; Temür, Burcu Gülmez; MathematicsIn this paper we determine $b\\in F_{q^n}^\\ast$ for which the polynomial $f(x)=x^{s+1}+bx\\in F_{q^n}\\left[x\\right]$ is a permutationpolynomial and determine $b\\in F_{q^n}^\\ast$ for which the polynominal $f(x)=x^{s+1}+bx\\in F_{q^n}\\left[x\\right]$ is a complete permutationpolynomial where $s=\\frac{q^n-1}t,\\;t\\in\\mathbb{Z}^+$ such that $\\left.t\\;\\right|\\;q^n-1$.Article Citation Count: 0An exhaustive computer search for finding new curves with many points among fibre products of two Kummer covers over $\\Bbb{F}_5$ and $\\Bbb{F}_7$(2013) Gülmez Temür, Burcu; Temür, Burcu Gülmez; Yayla, Oğuz; MathematicsIn this paper we make an exhaustive computer search for finding new curves with many points among fibre products of 2 Kummer covers of the projective line over F5 and F7 . At the end of the search, we have 12 records and 6 new entries for the current Table of Curves with Many Points. In particular, we observe that the fibre product $y^3_1$ = $\\frac {5(x+2)(x +5)} {x}$, $y^3_2$ $\\frac {3x^2(x +5)} {x + 3}$ over F7 has genus 7 with 36 rational points. As this coincides with the Ihara bound, we conclude that the maximum number N7 (7) of F7 -rational points among all curves of genus 7 is 36. Our exhaustive search has been possible because of the methods given in the recent work by Özbudak and Temür (2012) for determining the number of rational points of such curves.Conference Object Citation Count: 0On Fibre Products of Kummer Curves with Many Rational Points over Finite Fields(Springer-verlag Berlin, 2015) Gülmez Temür, Burcu; Temur, Burcu Gulmez; Yayla, Oguz; MathematicsWe determined the number of rational points of fibre products of two Kummer covers over a rational point of the projective line in a recent work of F. Ozbudak and B. G. Temur (Des Codes Cryptogr 70(3): 385-404, 2014), where we also constructed explicit examples, including a record and two new entries for the current Table of Curves with Many Points (manYPoints: Table of curves with many points. http://www.manypoints.org (2014). Accessed 30 Sep 2014). Using the methods given in Ozbudak and Gulmez Temur (Des Codes Cryptogr 70(3): 385-404, 2014), we made an exhaustive computer search over F-5 and F-7 by the contributions of O. Yayla and at the end of this search we obtained 12 records and 6 new entries for the current table; in particular, we observed that the fibre product with genus 7 and 36 rational points coincides with the Ihara bound, thus we concluded that the maximum number N-7(7) of F-7-rational points among all curves of genus 7 is 36 (Ozbudak et al., Turkish J Math 37(6): 908-913, 2013). Recently, we made another exhaustive computer search over F-11. In this paper we are representing the results as three records and three new entries for the current table.Article Citation Count: 5Finite number of fibre products of Kummer covers and curves with many points over finite fields(Springer, 2014) Gülmez Temür, Burcu; Temur, Burcu Gulmez; MathematicsWe study fibre products of a finite number of Kummer covers of the projective line over finite fields. We determine the number of rational points of the fibre product over a rational point of the projective line, which improves the results of Ozbudak and Temur (Appl Algebra Eng Commun Comput 18:433-443, 2007) substantially. We also construct explicit examples of fibre products of Kummer covers with many rational points, including a record and two new entries for the current table (http://www.manypoints.org, 2011).Article Citation Count: 3Fibre products of Kummer covers and curves with many points(Springer, 2007) Gülmez Temür, Burcu; Temur, Burcu Guelmez; MathematicsWe study the general fibre product of any two Kummer covers of the projective line over finite fields. Under some assumptions, we obtain an involved condition for the existence of rational points in the fibre product over a rational point of the projective line so that we determine the exact number of the rational points. Using this, we construct explicit examples of such fibre products with many rational points. In particular we obtain a record and a new entry for the table (http://www.science.uva.nl/(similar to)geer/tables-mathcomp15.ps).Article Citation Count: 1An exhaustive computer search for finding new curves with many points among fibre products of two Kummer covers over F5 and F7(Tubitak Scientific & Technological Research Council Turkey, 2013) Gülmez Temür, Burcu; Temur, Burcu Gulmez; Yayla, Oguz; MathematicsIn this paper we make an exhaustive computer search for finding new curves with many points among fibre products of 2 Kummer covers of the projective line over F-5 and F-7. At the end of the search, we have 12 records and 6 new entries for the current Table of Curves with Many Points. In particular, we observe that the fibre product y(1)(3)= 5(x + 2)(x + 5)/x, y(2)(3)= 3x(2()x + 5)/x + 3 over F-7 has genus 7 with 36 rational points. As this coincides with the Ihara bound, we conclude that the maximum number N-7(7) of F-7-rational points among all curves of genus 7 is 36. Our exhaustive search has been possible because of the methods given in the recent work by Ozbudak and Temur (2012) for determining the number of rational points of such curves.Article Citation Count: 3Classification of some quadrinomials over finite fields of odd characteristic(Academic Press inc Elsevier Science, 2023) Gülmez Temür, Burcu; Temur, Burcu Gulmez; MathematicsIn this paper, we completely determine all necessary and sufficient conditions such that the polynomial f(x) = x3 + axq +2 + bx2q +1 + cx3q, where a, b, c is an element of Fq*, is a permutation quadrinomial of Fq2 over any finite field of odd characteristic. This quadrinomial has been studied first in [25] by Tu, Zeng and Helleseth, later in [24] Tu, Liu and Zeng revisited these quadrinomials and they proposed a more comprehensive characterization of the coefficients that results with new permutation quadrinomials, where char(Fq) = 2 and finally, in [16], Li, Qu, Li and Chen proved that the sufficient condition given in [24] is also necessary and thus completed the solution in even characteristic case. In [6] Gupta studied the permutation properties of the polynomial x3 + axq +2 + bx2q +1 + cx3q, where char(Fq) = 3, 5 and a, b, c is an element of Fq* and proposed some new classes of permutation quadrinomials of Fq2 . In particular, in this paper we classify all permutation polynomials of Fq2 of the form f(x) = x3 + axq +2 + bx2q +1 + cx3q, where a, b, c is an element of Fq*, over all finite fields of odd characteristic and obtain several new classes of such permutation quadrinomials. (c) 2022 Elsevier Inc. All rights reserved.Article Citation Count: 0On a class of permutation trinomials over finite fields(Tubitak Scientific & Technological Research Council Turkey, 2024) Gülmez Temür, Burcu; Temür, Burcu Gülmez; Özkaya, Buket; MathematicsIn this paper, we study the permutation properties of the class of trinomials of the form f (x) = x4q+1 + λ1xq+4 + λ2x2q+3 ∈ Fq2 [x] , where λ1, λ2 ∈ Fq and they are not simultaneously zero. We find all necessary and sufficient conditions on λ1 and λ2 such that f (x) permutes Fq2 , where q is odd and q = 22k+1, k ∈