Khan, Muhammad Umer
Loading...
Name Variants
Khan, Muhammad Umer
K.,Muhammad Umer
Muhammad Umer, Khan
Khan,Muhammad Umer
M.U.Khan
M., Khan
M.,Khan
Khan U.
Khan M.
Khan,M.U.
M. U. Khan
Umer Khan M.
K., Muhammad Umer
Muhammad Umer Khan
Khan, Umer
Khan, Muhammed Umer
Khan, M. U.
K.,Muhammad Umer
Muhammad Umer, Khan
Khan,Muhammad Umer
M.U.Khan
M., Khan
M.,Khan
Khan U.
Khan M.
Khan,M.U.
M. U. Khan
Umer Khan M.
K., Muhammad Umer
Muhammad Umer Khan
Khan, Umer
Khan, Muhammed Umer
Khan, M. U.
Job Title
Yardımcı Doçent
Email Address
umer.khan@atilim.edu.tr
Main Affiliation
Mechatronics Engineering
Status
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Scholarly Output
30
Articles
10
Citation Count
215
Supervised Theses
8
30 results
Scholarly Output Search Results
Now showing 1 - 10 of 30
Article Citation - WoS: 16Citation - Scopus: 22Tobset: a New Tobacco Crop and Weeds Image Dataset and Its Utilization for Vision-Based Spraying by Agricultural Robots(Mdpi, 2022) Alam, Muhammad Shahab; Khan, Muhammad Umer; Alam, Mansoor; Tufail, Muhammad; Güneş, Ahmet; Khan, Muhammad Umer; Gunes, Ahmet; Salah, Bashir; Khan, Muhammad Tahir; Khan, Muhammad Umer; Güneş, Ahmet; Mechatronics Engineering; Department of Mechatronics Engineering; Department of Mechatronics Engineering; Mechatronics Engineering; Department of Mechatronics EngineeringSelective agrochemical spraying is a highly intricate task in precision agriculture. It requires spraying equipment to distinguish between crop (plants) and weeds and perform spray operations in real-time accordingly. The study presented in this paper entails the development of two convolutional neural networks (CNNs)-based vision frameworks, i.e., Faster R-CNN and YOLOv5, for the detection and classification of tobacco crops/weeds in real time. An essential requirement for CNN is to pre-train it well on a large dataset to distinguish crops from weeds, lately the same trained network can be utilized in real fields. We present an open access image dataset (TobSet) of tobacco plants and weeds acquired from local fields at different growth stages and varying lighting conditions. The TobSet comprises 7000 images of tobacco plants and 1000 images of weeds and bare soil, taken manually with digital cameras periodically over two months. Both vision frameworks are trained and then tested using this dataset. The Faster R-CNN-based vision framework manifested supremacy over the YOLOv5-based vision framework in terms of accuracy and robustness, whereas the YOLOv5-based vision framework demonstrated faster inference. Experimental evaluation of the system is performed in tobacco fields via a four-wheeled mobile robot sprayer controlled using a computer equipped with NVIDIA GTX 1650 GPU. The results demonstrate that Faster R-CNN and YOLOv5-based vision systems can analyze plants at 10 and 16 frames per second (fps) with a classification accuracy of 98% and 94%, respectively. Moreover, the precise smart application of pesticides with the proposed system offered a 52% reduction in pesticide usage by spotting the targets only, i.e., tobacco plants.Conference Object Citation - Scopus: 3Reciprocal Altruism-Based Path Planning Optimization for Multi-Agents(Institute of Electrical and Electronics Engineers Inc., 2022) Maeedi,A.; Khan,M.U.; Irfanoglu,B.; Mechatronics Engineering; Department of Mechatronics EngineeringThis paper investigates solutions for the fundamental yet challenging problem of path planning of autonomous multi-agents. The novelty of the proposed algorithm, reciprocal altruism-based particle swarm optimization (RAPSO), lies in the introduction of information sharing among the agents. The RAPSO utilizes kinship relatedness among the agents during the optimization process to reciprocate the significant data. The concept of reciprocation is introduced to ensure that all agents remain in close contact through information exchange. The amount of exchange depends upon their physical location in the search space and their associated health indicator. Agents are classified as donors, recipients, or un-active concerning their health indicator and their positions. The ability of RAPSO to keep all agents closer to local optima through reciprocal altruism is evaluated for path planning optimization problem. Simulation results show that the RAPSO is very competitive when compared with the canonical PSO. The results of the generalized simulation scenario also prove its potential in solving path planning problems in robotics. © 2022 IEEE.Conference Object Citation - WoS: 3Biomechanical Design and Control of Lower Limb Exoskeleton for Sit-to-Stand and Stand-to-Sit Movements(Ieee, 2018) Qureshi, Muhammad Hamza; Masood, Zeeshan; Rehman, Linta; Owais, Muhammad; Khan, Muhammad Umer; Mechatronics EngineeringIn this paper, we present design and development phase of lower limb robotic exoskeleton that can assist paralyzed individuals. Motion of the human wearing exoskeleton is introduced by actuators. Both exoskeleton legs are attached to the supporting frame by passive universal joints. The exoskeleton provides 3 DOFs per limb of which two joints are active and one passive. The control actions i.e., sit-to-stand and stand-to-sit movements are triggered using Double Pole Double Throw (DPDT) toggle switch. The control scheme is implement using Switch control method and the feedback is provided by means of current measurement. This assistive device can be utilized for the disabled persons. The simulation results are provided that evaluates the performance of the control actions on exoskeleton.Master Thesis Bilinmeyen Ortamlarda Robot Sürüleri için Algoritma Planlamada Etkin Bir Yol(2020) Abdı, Mohammed Isam Ismael; Khan, Muhammad Umer; Mechatronics EngineeringBirçok durumda birkaç mobil robot —bağımsız ajan— tek bir robot için gerçekleştirilmesi zor veya imkânsız hedefleri elde etmek amacıyla ekip halinde bir araya gelebilirler. Bu mobil robotlar belli bir görevi yerine getirmek için iş birliği yapabilirler, bu, sürünün büyüklüğüyle tam bir karşılıklı ilişki halindedir. Tek tek her robot sensörlerini kullanarak yerel ortamla karşılıklı olarak etkileşir. Sürü açısından birincil endişe başlangıçtan hedef yere kadar güvenli bir yolun tanımlanması ve izlenmesidir. Literatürde bu hedefin gerçekleştirilmesiyle ilgili Neural Network (Sinir Ağları), Genetic Algorithms (Genetik Algoritmalar), Bacterial Foraging Optimization (Bakteriyel Besin Arama Optimizasyonu), Ant Colony Optimization (Karınca Kolonisi Optimizasyonu), Artificial Potential Field (Yapay Potansiyel Alan), v.b. gibi pek çok algoritma mevcuttur. Bunlar arasında Bacterial Foraging Optimization (BFO) algoritması çalışma ortamında bilinen tüm engelleri göz önüne alarak güvenliği ve hedefin bulunmasını sağlamaktaki etkinliği nedeniyle pek çok bilimcinin dikkatini çekmektedir. Ayrıca, belirlenen yolu keşfeder ve doğru olarak izler. BFO kümeleşme prensiplerini ve doğadaki sosyal davranışlar analojisini kullanan, ilhamını biyolojiden alan doğrudan yaklaşımlı ama güçlü bir optimizasyon yöntemidir. BFO yassı bir yüzey haritası üzerinde engellerin varlığında başlangıçtan hedef noktaya kadar optimal yolu başarıyla araştırır. Ancak bu algoritma, konveks olmayan engellerin işe karışması durumunda yerel asgari şartlara sıkışmak gibi bir zayıflığa sahiptir. Sürünün robotlarından herhangi birinin sıkışıp kalması durumu görevinin tamamının başarısızlığı olarak görülmektedir. Bu araştırma BFO algoritmasının hem konveks olan hem de olmayan niteliklerdeki engellerden başarıyla kaçınılmasını sağlayan iyileştirilmiş bir versiyonunu önermektedir. Önerilen algoritma engele zıt yöndeki belli bir mesafeyi kapsayarak robotun yerel asgari değerlerden kurtulmasına yardım eder. Sert bir açıyla karşılaşıldığında algoritma güvenli bir yol oluşturmak için görsel engeller oluşturmaya başlar. Daha sonra bu bilgi diğer robotlara aktarılarak onların da yerel minimumlardan kaçınmaları sağlanır. Önerilen algoritmanın etkinliğinin test edilmesi için mevcut BFO algoritmasıyla bir karşılaştırma yapılmıştır. Her iki algoritmanın performansı bilinmeyen dinamik ve statik ortamlarda test edilmiştir. Sonuçlara göre, önerilen algoritmanın yerel minimumlardan başarıyla kurtulduğu ve BFO'nun sıkışıp kaldığı gözlenmiştir.Article Citation - WoS: 14Citation - Scopus: 25Deep Learning-Based Computer-Aided Diagnosis (cad): Applications for Medical Image Datasets(Mdpi, 2022) Kadhim, Yezi Ali; Khan, Muhammad Umer; Mishra, Alok; Software Engineering; Mechatronics EngineeringComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.Conference Object Citation - Scopus: 3Convolution Neural Network (cnn) Based Automatic Sorting of Cherries(Institute of Electrical and Electronics Engineers Inc., 2021) Park,H.; Khan,M.U.; Mechatronics EngineeringCherries are spring fruits enriched with nutrients, and are easily available in food markets around the world. Due to their excess demand, many enterprises solely focused on their processing. Cherries are especially susceptible to pathological-, physiological-diseases and structural degradation due to their soft outer skin. The post-harvest life of the fruit is limited by various characteristics. The agricultural industry has also been at the forefront to get benefits from the advanced machine learning tools. This study presents an image processing-based system for sorting cherries using the convolutional neural network (CNN). For this study, Prunus avium L cherries of export quality, available in Turkey, tagged as ‘0900 Ziraat’, are used. Surprisingly, there exists no dataset for these cherries; hence, we developed our dataset. Through the proposed approach based upon U-Net, the binary classification accuracy of 99% is achieved. Clear identification is demonstrated by the test results of varying mixture ratios of good and bad cherries. It can therefore be said that for cherry sorting and grading, U-Net can be applied as a reliable and promising machine learning tool. ©2021 IEEEArticle Citation - WoS: 3Citation - Scopus: 3Avoiding Contingent Incidents by Quadrotors Due To One or Two Propellers Failure(Public Library Science, 2023) Altinuc, Kemal Orcun; Khan, Muhammad Umer; Iqbal, Jamshed; Mechatronics EngineeringWith the increasing impact of drones in our daily lives, safety issues have become a primary concern. In this study, a novel supervisor-based active fault-tolerant (FT) control system is presented for a rotary-wing quadrotor to maintain its pose in 3D space upon losing one or two propellers. Our approach allows the quadrotor to make controlled movements about a primary axis attached to the body-fixed frame. A multi-loop cascaded control architecture is designed to ensure robustness, stability, reference tracking, and safe landing. The altitude control is performed using a proportional-integral-derivative (PID) controller, whereas linear-quadratic-integral (LQI) and model-predictive-control (MPC) have been investigated for reduced attitude control and their performance is compared based on absolute and mean-squared error. The simulation results affirm that the quadrotor remains in a stable region, successfully performs the reference tracking, and ensures a safe landing while counteracting the effects of propeller(s) failures.Conference Object Citation - Scopus: 9Biomechanical Design and Control of Lower Limb Exoskeleton for Sit-To and Stand-To Movements(Institute of Electrical and Electronics Engineers Inc., 2018) Qureshi,M.H.; Masood,Z.; Rehman,L.; Owais,M.; Khan,M.U.; Mechatronics EngineeringIn this paper, we present design and development phase of lower limb robotic exoskeleton that can assist paralyzed individuals. Motion of the human wearing exoskeleton is introduced by actuators. Both exoskeleton legs are attached to the supporting frame by passive universal joints. The exoskeleton provides 3 DOFs per limb of which two joints are active and one passive. The control actions i.e., sit-to-stand and stand-to-sit movements are triggered using Double Pole Double Throw (DPDT) toggle switch. The control scheme is implement using Switch control method and the feedback is provided by means of current measurement. This assistive device can be utilized for the disabled persons. The simulation results are provided that evaluates the performance of the control actions on exoskeleton. © 2018 IEEE.Article Citation - WoS: 16Citation - Scopus: 22Hybrid Eeg-Fnirs Bci Fusion Using Multi-Resolution Singular Value Decomposition (msvd)(Frontiers Media Sa, 2020) Khan, Muhammad Umer; Hasan, Mustafa A. H.; Mechatronics EngineeringBrain-computer interface (BCI) multi-modal fusion has the potential to generate multiple commands in a highly reliable manner by alleviating the drawbacks associated with single modality. In the present work, a hybrid EEG-fNIRS BCI system-achieved through a fusion of concurrently recorded electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals-is used to overcome the limitations of uni-modality and to achieve higher tasks classification. Although the hybrid approach enhances the performance of the system, the improvements are still modest due to the lack of availability of computational approaches to fuse the two modalities. To overcome this, a novel approach is proposed using Multi-resolution singular value decomposition (MSVD) to achieve system- and feature-based fusion. The two approaches based up different features set are compared using the KNN and Tree classifiers. The results obtained through multiple datasets show that the proposed approach can effectively fuse both modalities with improvement in the classification accuracy.Article Citation - WoS: 0Citation - Scopus: 0Autonomous Landing of a Quadrotor on a Moving Platform Using Motion Capture System(Springer, 2024) Qassab, Ayman; Khan, Muhammad Umer; Irfanoglu, Bulent; Mechatronics Engineering; Department of Mechatronics EngineeringThis paper investigates the challenging problem of the autonomous landing of a quadrotor on a moving platform in a non-cooperative environment. The limited sensing ability of quadrotors often hampers their utilization for autonomous landing, especially in GPS-denied areas. The performance of motion capture systems (MCSs) in many application areas is the motivation to utilize them for the autonomous take-off and landing of the quadrotor in this research. An autonomous closed-loop vision-based navigation, tracking, and control system is proposed for quadrotors to perform landing based upon Model Predictive Control (MPC) by utilizing multi-objective functions. The entire process is posed as a constrained tracking problem to minimize energy consumption and ensure smooth maneuvers. The proposed approach is fully autonomous from take-off to landing; whereas, the movements of the landing platform are pre-defined but still unknown to the quadrotor. The landing performance of the quadrotor is tested and evaluated for three different movement patterns: static, square-shaped, and circular-shaped. Through experimental results, the pose error between the quadrotor and the platform is measured and found to be less than 30 cm. Introducing a holistic vision system for quadrotor navigation, tracking, and landing on stationary/moving platforms. Proposing an energy-efficient, smooth, and stable MPC controller validated by Lyapunov analysis. Validating the adept tracking and safe landings of the quadrotor on stationary/moving platforms through three diverse experiments.
- «
- 1 (current)
- 2
- 3
- »