Khan, Muhammad Umer
Loading...
Name Variants
Khan, Muhammad Umer
K.,Muhammad Umer
Muhammad Umer, Khan
Khan,Muhammad Umer
M.U.Khan
M., Khan
M.,Khan
Khan U.
Khan M.
Khan,M.U.
M. U. Khan
Umer Khan M.
K., Muhammad Umer
Muhammad Umer Khan
Khan, Umer
Khan, Muhammed Umer
Khan, M. U.
K.,Muhammad Umer
Muhammad Umer, Khan
Khan,Muhammad Umer
M.U.Khan
M., Khan
M.,Khan
Khan U.
Khan M.
Khan,M.U.
M. U. Khan
Umer Khan M.
K., Muhammad Umer
Muhammad Umer Khan
Khan, Umer
Khan, Muhammed Umer
Khan, M. U.
Job Title
Yardımcı Doçent
Email Address
umer.khan@atilim.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output
30
Articles
10
Citation Count
215
Supervised Theses
8
30 results
Scholarly Output Search Results
Now showing 1 - 10 of 30
Conference Object Citation Count: 4Biomechanical Design and Control of Lower Limb Exoskeleton for Sit-to-Stand and Stand-to-Sit Movements(Ieee, 2018) Khan, Muhammad Umer; Masood, Zeeshan; Rehman, Linta; Owais, Muhammad; Khan, Muhammad Umer; Mechatronics EngineeringIn this paper, we present design and development phase of lower limb robotic exoskeleton that can assist paralyzed individuals. Motion of the human wearing exoskeleton is introduced by actuators. Both exoskeleton legs are attached to the supporting frame by passive universal joints. The exoskeleton provides 3 DOFs per limb of which two joints are active and one passive. The control actions i.e., sit-to-stand and stand-to-sit movements are triggered using Double Pole Double Throw (DPDT) toggle switch. The control scheme is implement using Switch control method and the feedback is provided by means of current measurement. This assistive device can be utilized for the disabled persons. The simulation results are provided that evaluates the performance of the control actions on exoskeleton.Conference Object Citation Count: 57Real-Time Machine-Learning Based Crop/Weed Detection and Classification for Variable-Rate Spraying in Precision Agriculture(Ieee, 2020) Khan, Muhammad Umer; Alam, Muhammad Shahab; Roman, Muhammad; Tufail, Muhammad; Khan, Muhammad Umer; Khan, Muhammad Tahir; Mechatronics EngineeringTraditional agrochemical spraying techniques often result in over or under-dosing. Over-dosing of spray chemicals is costly and pose a serious threat to the environment, whereas, under-dosing results in inefficient crop protection and thereby low crop yields. Therefore, in order to increase yields per acre and to protect crops from diseases, the exact amount of agrochemicals should be sprayed according to the field/crop requirements. This paper presents a real-time computer vision-based crop/weed detection system for variable-rate agrochemical spraying. Weed/crop detection and classification were performed through the Random Forest classifier. The classification model was first trained offline with our own created dataset and then deployed in the field for testing. Agrochemical spraying was done through application equipment consisting of a PWM-based fluid flow control system capable of spraying the desired amounts of agrochemical directed by the vision-based feedback system. The results obtained from several field tests demonstrate the effectiveness of the proposed vision-based agrochemical spraying framework in real-time.Conference Object Citation Count: 84Real-Time Machine-Learning Based Crop/Weed Detection and Classification for Variable-Rate Spraying in Precision Agriculture(Institute of Electrical and Electronics Engineers Inc., 2020) Khan, Muhammad Umer; Alam,M.S.; Roman,M.; Tufail,M.; Khan,M.U.; Khan,M.T.; Mechatronics EngineeringTraditional agrochemical spraying techniques often result in over or under-dosing. Over-dosing of spray chemicals is costly and pose a serious threat to the environment, whereas, under-dosing results in inefficient crop protection and thereby low crop yields. Therefore, in order to increase yields per acre and to protect crops from diseases, the exact amount of agrochemicals should be sprayed according to the field/crop requirements. This paper presents a real-time computer vision-based crop/weed detection system for variable-rate agrochemical spraying. Weed/crop detection and classification were performed through the Random Forest classifier. The classification model was first trained offline with our own created dataset and then deployed in the field for testing. Agrochemical spraying was done through application equipment consisting of a PWM-based fluid flow control system capable of spraying the desired amounts of agrochemical directed by the vision-based feedback system. The results obtained from several field tests demonstrate the effectiveness of the proposed vision-based agrochemical spraying framework in real-time. © 2020 IEEE.Master Thesis State of charge (SOC) optimization of reconfigurable battery network(2021) Khan, Muhammad Umer; Khan, Umer; Mechatronics EngineeringPiller, özellikle lityum iyon (Li-ion) olmak üzere önemli bir enerji kaynağıdır. Şaşırtıcı kimyasal özellikleri, elektrikli araçlar (EV'ler) dahil olmak üzere birçok uygulama alanında onları favori haline getirdi. Sistem gereksinimlerini karşılamak için, sabit veya yeniden yapılandırılabilir bir yapıda birden fazla pil bağlanır. Bu mimarilerin karşılaştığı birçok sorun, özellikle de zayıf pil kullanımının aşılması da dahil olmak üzere sabit yapı göz önüne alındığında, bu çalışma, tüm sistem gereksinimlerini karşılamak için yeniden yapılandırılabilen gelişmiş bir pil sistemi önermektedir. Hasarlı bir pilin kullanımını atlama yeteneğine ek olarak, şarj olan bir pil, bağlantının geri kalanından tamamen ayrılabilir. Bu piller, seri, paralel veya hibrit olsun, belirli bir konfigürasyonda bağlandıklarında, tekrarlanan kullanım nedeniyle piller arasında şarj ve deşarj dengesizliğine neden olan bir performans hatasıyla karşı karşıya kalırlar. Pillerden biri aşırı şarj veya aşırı deşarj nedeniyle hasar görürse, sistemin genel performansı üzerinde kötü etkilere neden olabilir. Bu araştırma, pillerin yaşam döngülerini iyileştirmek için piller arasında bir denge sağlamak için gelişmiş bir pil yönetim sistemi önermektedir. Ayrıca, şarj için maksimum değeri veya minimum deşarj değeri sağlayarak pillerin aşırı şarj edilmesini veya aşırı boşalmasını önler, çünkü bu iki değerde pilin durumu deşarjdan şarja veya tam tersidir. Böylece çalışma süresi boyunca sistemin en üst seviyede çalışmasını sağlar. Bu çalışma aynı zamanda optimum yük voltajını sağlamak için bir optimizasyon algoritması önermektedir. Bu konfigürasyonun seçimi, her bir pil için gerekli voltajın yanı sıra şarj durumuna (SOC) bağlıdır. Sistemi çalışma süresi boyunca gerekli voltajla donatmak için bu tez, düşük şarjlı pili seri ve paralel konfigürasyonlarda boşalmaya hazır başka bir pil ile değiştirmek için bir algoritma önermektedir. Ayrıca hibrit konfigürasyonda iki konfigürasyon arasında köprü oluşturan ortak pil de değiştiriliyor. Tüm pillerin şarj olduğu göz önüne alındığında, bu araştırma, en az bir pil kullanılabilir hale gelene kadar yükün harici bir voltaj kaynağından voltajla beslenmesini önerir. MATLAB'de simülasyon kullanımına dayanan sonuçlar, önerilen algoritmaların, tüm pilleri aşırı şarj ve aşırı deşarjdan koruyan etkili bir pil yönetim sistemi elde etme yeteneğini göstermiştir. Ek olarak, konfigürasyondaki değişikliklere rağmen sistemin çalışma süresi boyunca gerekli voltajı sağlayabildiği de gösterilmiştir. Ayrıca, Geliştirilmiş Yeniden Yapılandırılabilir Enerji Geliştirilmiş Mimarinin (I-REEA) çalışma süresi boyunca bağlantılardaki tüm değişiklikleri karşılama yeteneğini gösterir. Anahtar Kelimeler: Lityum iyon akü (Li-ion), Şarj Durumu (SOC), Elektrikli araçlar (EV'ler), Akü yönetim sistemi (BMS), hücre dengeleme, akü dengeleme sistemi, akü şarjı, seri bağlı akü, paralel bağlı akü, hibrit konfigürasyon, akü paketi, akü yeniden konfigüre edilebilir sistem, akü enerji sistemi ve optimizasyon.Article Citation Count: 0Mobile Robot Navigation Using Reinforcement Learning in Unknown Environments(2019) Khan, Muhammad Umer; Mechatronics EngineeringIn mobile robotics, navigation is considered as one of the most primary tasks, which becomes more challenging during local navigation when the environment is unknown. Therefore, the robot has to explore utilizing the sensory information. Reinforcement learning (RL), a biologically-inspired learning paradigm, has caught the attention of many as it has the capability to learn autonomously in an unknown environment. However, the randomized behavior of exploration, common in RL, increases computation time and cost, hence making it less appealing for real-world scenarios. This paper proposes an informed-biased softmax regression (iBSR) learning process that introduce a heuristic-based cost function to ensure faster convergence. Here, the action-selection is not considered as a random process, rather, is based on the maximum probability function calculated using softmax regression. Through experimental simulation scenarios for navigation, the strength of the proposed approach is tested and, for comparison and analysis purposes, the iBSR learning process is evaluated against two benchmark algorithms.Article Citation Count: 6Escaping Local Minima in Path Planning Using a Robust Bacterial Foraging Algorithm(Mdpi, 2020) Khan, Muhammad Umer; Khan, Muhammad Umer; Güneş, Ahmet; Mıshra, Deepti; Mechatronics Engineering; Department of Mechatronics Engineering; Computer EngineeringThe bacterial foraging optimization (BFO) algorithm successfully searches for an optimal path from start to finish in the presence of obstacles over a flat surface map. However, the algorithm suffers from getting stuck in the local minima whenever non-circular obstacles are encountered. The retrieval from the local minima is crucial, as otherwise, it can cause the failure of the whole task. This research proposes an improved version of BFO called robust bacterial foraging (RBF), which can effectively avoid obstacles, both of circular and non-circular shape, without falling into the local minima. The virtual obstacles are generated in the local minima, causing the robot to retract and regenerate a safe path. The proposed method is easily extendable to multiple robots that can coordinate with each other. The information related to the virtual obstacles is shared with the whole swarm, so that they can escape the same local minima to save time and energy. To test the effectiveness of the proposed algorithm, a comparison is made against the existing BFO algorithm. Through the results, it was witnessed that the proposed approach successfully recovered from the local minima, whereas the BFO got stuck.Article Citation Count: 10Tobset: a New Tobacco Crop and Weeds Image Dataset and Its Utilization for Vision-Based Spraying by Agricultural Robots(Mdpi, 2022) Alam, Muhammad Shahab; Khan, Muhammad Umer; Alam, Mansoor; Tufail, Muhammad; Güneş, Ahmet; Khan, Muhammad Umer; Gunes, Ahmet; Salah, Bashir; Khan, Muhammad Tahir; Khan, Muhammad Umer; Güneş, Ahmet; Khan, Muhammad Umer; Güneş, Ahmet; Mechatronics Engineering; Department of Mechatronics Engineering; Department of Mechatronics Engineering; Mechatronics Engineering; Department of Mechatronics EngineeringSelective agrochemical spraying is a highly intricate task in precision agriculture. It requires spraying equipment to distinguish between crop (plants) and weeds and perform spray operations in real-time accordingly. The study presented in this paper entails the development of two convolutional neural networks (CNNs)-based vision frameworks, i.e., Faster R-CNN and YOLOv5, for the detection and classification of tobacco crops/weeds in real time. An essential requirement for CNN is to pre-train it well on a large dataset to distinguish crops from weeds, lately the same trained network can be utilized in real fields. We present an open access image dataset (TobSet) of tobacco plants and weeds acquired from local fields at different growth stages and varying lighting conditions. The TobSet comprises 7000 images of tobacco plants and 1000 images of weeds and bare soil, taken manually with digital cameras periodically over two months. Both vision frameworks are trained and then tested using this dataset. The Faster R-CNN-based vision framework manifested supremacy over the YOLOv5-based vision framework in terms of accuracy and robustness, whereas the YOLOv5-based vision framework demonstrated faster inference. Experimental evaluation of the system is performed in tobacco fields via a four-wheeled mobile robot sprayer controlled using a computer equipped with NVIDIA GTX 1650 GPU. The results demonstrate that Faster R-CNN and YOLOv5-based vision systems can analyze plants at 10 and 16 frames per second (fps) with a classification accuracy of 98% and 94%, respectively. Moreover, the precise smart application of pesticides with the proposed system offered a 52% reduction in pesticide usage by spotting the targets only, i.e., tobacco plants.Master Thesis Pervane Arızası Durumunda Kuadrotorun Stabilitesini Sağlamak(2021) Altınuç, Kemal Orçun; Khan, Muhammad Umer; Altınuç, Kemal Orçun; Khan, Muhammad Umer; Mechatronics EngineeringBu tezde, sabit kanatlı bir kuadrotorun, yalpalama hareketinden feragat ederek bir veya iki zıt pervanesini kaybetmesine rağmen 3 boyutlu uzayda konumunu koruması için bir çözüm sunulmaktadır. Bu kontrol stratejisinde, kuadrotor, araca göre sabitlenmiş bir birincil eksen etrafında döner ve bu ekseni ötelenme hareketi gerçekleştirmek için değiştirir. Bir pervane veya iki karşıt pervane kaybetmesine rağmen kuadrotorun tutumunu ve konumunu stabilize etmek için çok döngülü bir kademeli kontrol kanunu geliştirilmiştir. İlk olarak, motor arıza senaryoları için denge çözümleri hesaplanır. Daha sonra, bir referans ve bir özel kuadrotor için doğrusallaştırılmış sistem etrafında bir azaltılmış durum denetleyicisi ve konum denetleyicisi tasarlanır. Matlab/Simulink ve Matlab/Simscape üzerinde simülasyonlar yapılarak sonuçlar karşılaştırılır. Son olarak, özel yapım bir kuadrotorun CAD çizimleri, kuadrotorun eylemsizlik momentini hesaplamak için kullanılır ve sonuçlar Çift Telli Pendulum deneyi ile doğrulanır. Sonuçlar, kuadrotorun pervane arızası durumunda stabiliteye ulaştığını göstermektedir.Master Thesis Hava Manipülatörü için Farklı Kontrol Sistemlerinin Tasarımı(2019) Başaranoğlu, Ahmet Turgut; Khan, Muhammad Umer; Khan, Muhammad Umer; Arıkan, Kutluk Bilge; Mechatronics EngineeringBu tez kapsamında, dört rotorlu bir multikopter ve tek serbestlik dereceli robot koldan oluşan bir uçan manipülatör için yönelim ve pozisyon denetimcileri tasarlanmış ve tartışılmıştır. Robotik kol uçan platformun yunuslama düzleminde çalışmaktadır. Seçilen senaryolara yönelik çeşitli denetim algoritmaları tasarlanmıştır. Bütüncül sistem dinamiğine (multikopter ve manipülatörün etkileşimli doğrusal olmayan modeli) yönelik merkezi denetimciler tasarlanmıştır. Bununla birlikte, platform ve manipülatörü ayrı ayrı denetleyen dağıtılmış kontrol sistemleri de tasarlanmıştır. Robotik kolun uçan sisteme etki eden bozucu girdinin bertaraf edilmesine, sistemin yönelim ve pozisyon kontrolüne yönelik kullanımı senaryolar çerçevesinde çalışılmıştır. ADRC, T-LQR ve ardışık PID denetim algoritmaları tasarlanmıştır. Seçilen denetim yapısı ve senaryo iç mekanda çalışan bir uçan manipülatör üzerinde uygulanmıştır. Ultra geniş bant konumlandırma sistemi pozisyon ve yükseklik ölçümü için kullanılmıştır. Raspberry Pi 3 B +, Naze 32 donanımı ile Phyton kodu ve Matlab/Simulink yazılımı kullanarak gerçek zamanlı testler gerçekleştirilmiştir. Yönelik denetimcisi parametrelerinin test düzeneği üzerinde ince ayarları gerçekleştirilmiştir. Temel uçuş testleri ile yönelim ve pozisyon kontrolcü parametreleri düzenlenmiştir. Benzetimler ve testler ile robotik manipülatörün bozucu girdileri bertaraf etmeye, yönelim ve pozisyon denetimini sağlamaya yönelik kullanımı gösterilmiştir. Anahtar Kelimeler: Uçan Manipülatör, Kuadkopter, ADRC, Takipçi LQR, Ardışık PID, Naze 32, Raspberry Pi, İç Mekan Konumlama, Yönelim Denetimi, Pozisyon DenetimiArticle Citation Count: 12Hybrid Eeg-Fnirs Bci Fusion Using Multi-Resolution Singular Value Decomposition (msvd)(Frontiers Media Sa, 2020) Khan, Muhammad Umer; Khan, Muhammad Umer; Hasan, Mustafa A. H.; Mechatronics EngineeringBrain-computer interface (BCI) multi-modal fusion has the potential to generate multiple commands in a highly reliable manner by alleviating the drawbacks associated with single modality. In the present work, a hybrid EEG-fNIRS BCI system-achieved through a fusion of concurrently recorded electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals-is used to overcome the limitations of uni-modality and to achieve higher tasks classification. Although the hybrid approach enhances the performance of the system, the improvements are still modest due to the lack of availability of computational approaches to fuse the two modalities. To overcome this, a novel approach is proposed using Multi-resolution singular value decomposition (MSVD) to achieve system- and feature-based fusion. The two approaches based up different features set are compared using the KNN and Tree classifiers. The results obtained through multiple datasets show that the proposed approach can effectively fuse both modalities with improvement in the classification accuracy.
- «
- 1 (current)
- 2
- 3
- »