Qasrawı, Atef Fayez Hasan

Loading...
Profile Picture
Name Variants
Qasrawi, Atef Fayez
Atef Fayez Hasan, Qasrawı
Qasrawı,A.F.H.
Qasrawi,A.F.H.
Q., Atef Fayez Hasan
Q.,Atef Fayez Hasan
Atef Fayez Hasan, Qasrawi
Qasrawi, Atef Fayez Hasan
A.F.H.Qasrawı
A.F.H.Qasrawi
A., Qasrawi
A.,Qasrawı
Qasrawı, Atef Fayez Hasan
Qasrawi, A. F.
Qasrawi,A.F.
Qasrawi, AF
Qasrawi, Atef F.
Qasrawi, Atef A.
Qasrawi, Atef Fayez
Qasrawi, Atef F.
Qasrawi, Atef A.
Qasrawi, Atef
Job Title
Doçent Doktor
Email Address
atef.qasrawi@atilim.edu.tr
Main Affiliation
Department of Electrical & Electronics Engineering
Status
Former Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

0

Research Products

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

0

Research Products

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

0

Research Products

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

0

Research Products

1

NO POVERTY
NO POVERTY Logo

0

Research Products

5

GENDER EQUALITY
GENDER EQUALITY Logo

0

Research Products

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

0

Research Products

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

1

Research Products

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo

0

Research Products

15

LIFE ON LAND
LIFE ON LAND Logo

0

Research Products

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

0

Research Products

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

17

Research Products

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

0

Research Products

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

0

Research Products

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

0

Research Products

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

0

Research Products

13

CLIMATE ACTION
CLIMATE ACTION Logo

0

Research Products
This researcher does not have a Scopus ID.
This researcher does not have a WoS ID.
Scholarly Output

222

Articles

218

Views / Downloads

639/0

Supervised MSc Theses

0

Supervised PhD Theses

0

WoS Citation Count

1887

Scopus Citation Count

1907

WoS h-index

21

Scopus h-index

21

Patents

0

Projects

0

WoS Citations per Publication

8.50

Scopus Citations per Publication

8.59

Open Access Source

17

Supervised Theses

0

Google Analytics Visitor Traffic

JournalCount
Journal of Electronic Materials15
Crystal Research and Technology13
physica status solidi (a)12
Journal of Alloys and Compounds11
Materials Science in Semiconductor Processing11
Current Page: 1 / 11

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Characterization of the Nanosandwiched Ga2s3< Interfaces as Microwave Filters and Thermally Controlled Electric Switches
    (Elsevier Gmbh, 2018) Alharbi, S. R.; Nazzal, Eman O.; Qasrawi, A. F.
    In this work, an indium layer of 50 nm thicknesses is sandwiched between two 500 nm thick Ga2S3 layers. The effect of indium nansandwiching on the composition, structure, morphology, light absorbability, capacitance and reactance spectra, and temperature dependent electrical conductivity of the Ga2S3 films are investigated by means of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray spectroscopy, Raman spectroscopy, visible light spectrophotometry, impedance spectroscopy and current voltage characteristics. While the nansandwiched films are observed to exhibit an amorphous nature of structure with indium content of Owing to the nucleation mechanisms that take place during the film growth, the accumulation of some unit cells in groups to form grains should be a significant reason for the existence of many different sizes of grains in the nanosand-wiched films (Alharbi and Qasrawi, 2016). 0, the Raman spectra displayed three vibrational modes at 127.7,145.0 and 274.3 cm(-1). It was also observed that the indium insertion in the structure of the Ga2S3 shrinks the energy band gap by 0.18 eV. The nanosandwiched films are observed to exhibit a semiconductor metal (SM) transition at 310 K. The SM transition is associated with thermal hysteresis that exhibited a maximum value of 16% at 352 K. This behavior of the nanosandwiched films nominate it for use as thermally controlled electric switches. In addition, the impedance spectral analysis in the range of 10-1800 MHz has shown a capacitance tunability of more than 70%. The measurements of the wave trapping property displayed a bandpass/reject filter characteristics above 1.0 GHz which allow using the Ga2S3/In/Ga2S3 thin films as microwave resonator. (C) 2017 Elsevier GmbH. All rights reserved.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Electrical Conductivity and Capacitance Spectra of Bi1.37sm0.13< Pyrochlore Ceramic in the Range of 0-3 Ghz
    (World Scientific Publ Co Pte Ltd, 2014) Qasrawi, A. F.; Bzour, Faten M.; Nazzal, Eman O.; Mergen, A.
    In this work, the electrical properties of samarium-doped bismuth niobium zinc oxide (Sm-doped BZN) pyrochlore ceramics are investigated by means of temperature dependent electrical conductivity and capacitance spectroscopy in the frequency range of 0-3 GHz. It was observed that the novel dielectric Sm-BZN ceramic exhibits a temperature and electric field dependent dielectric breakdown. When measured at 300 K, the breakdown electric field is 1.12 kV/cm and when heated the breakdown temperature is similar to 420 K. The pyrochlore is thermally active above 440K with conductivity activation energy of 1.37 eV. In addition, the room temperature capacitance spectra reflected a resonance-antiresonance switching property at 53MHz when subjected to an AC signal of low power of 5 dBm. Furthermore, when the Sm-BZN ceramics are used as microwave cavity and tested in the frequency range of 1.0-3.0 GHz, the cavity behaves as low pass filter with wide tunability up to a frequency of 1.91 GHz. At this frequency it behaves as a band rejection filter that blocks waves of 1.91 GHz and 2.57 GHz frequencies. These properties of the Sm-doped BZN are promising as they indicate the usability of the ceramics in digital electronic circuits as resonant microwave cavities suitable for the production of low pass/rejection band filters.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 21
    Engineering the Optical and Dielectric Properties of the Ga2s3< Nanosandwiches Via Indium Layer Thickness
    (Springer, 2018) Nazzal, Eman O.; Qasrawi, A. F.; Alharbi, S. R.
    In this study, the effect of the nanosandwiched indium slab thickness (20-200 nm) on the performance of the Ga2S3/In/Ga2S3 interfaces is explored by means of X-ray diffraction, Raman spectroscopy, and optical spectroscopy techniques. The indium slab thickness which was varied in the range of 20-200 nm is observed to enhance the visible light absorbability of the Ga2S3 by 54.6 times, engineered the energy band gap in the range of 3.7-1.4 eV and increases the dielectric constant without, significantly, altering the structure of the Ga2S3. The broad range of the band gap tunability and the increased absorbability nominate the Ga2S3 thin films for photovoltaic applications. In addition, the dielectric spectral analysis and modeling have shown that a wide variety in the plasmon resonant frequency could be established within the Ga2S3/In/Ga2S3 trilayers. The plasmon frequency engineering in the range of 0.56-2.08 GHz which is associated with drift mobility of 12.58-5.76 cm(2)/Vs and electron scattering time at femtosecond level are promising for the production of broad band high frequency microwave filters.