Işık, Mehmet

Loading...
Profile Picture
Name Variants
Mehmet, Işık
M.,Işık
Isik, Mehmet
Mehmet, Isik
I., Mehmet
I.,Mehmet
Işık,M.
Isik,M.
I.,Mehmet
M.,Isik
Işık, Mehmet
M., Isik
Isik, M.
Job Title
Profesör Doktor
Email Address
mehmet.isik@atilim.edu.tr
Main Affiliation
Department of Electrical & Electronics Engineering
Status
Former Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

0

Research Products

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

0

Research Products

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

1

Research Products

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

0

Research Products

1

NO POVERTY
NO POVERTY Logo

0

Research Products

5

GENDER EQUALITY
GENDER EQUALITY Logo

0

Research Products

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

0

Research Products

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

0

Research Products

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo

0

Research Products

15

LIFE ON LAND
LIFE ON LAND Logo

1

Research Products

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

0

Research Products

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

11

Research Products

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

0

Research Products

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

0

Research Products

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

0

Research Products

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

1

Research Products

13

CLIMATE ACTION
CLIMATE ACTION Logo

0

Research Products
This researcher does not have a Scopus ID.
This researcher does not have a WoS ID.
Scholarly Output

173

Articles

169

Views / Downloads

442/798

Supervised MSc Theses

3

Supervised PhD Theses

0

WoS Citation Count

1810

Scopus Citation Count

1870

WoS h-index

20

Scopus h-index

20

Patents

0

Projects

0

WoS Citations per Publication

10.46

Scopus Citations per Publication

10.81

Open Access Source

11

Supervised Theses

3

Google Analytics Visitor Traffic

JournalCount
Optical Materials17
Physica B: Condensed Matter16
Journal of Luminescence15
Materials Science in Semiconductor Processing14
Journal of Materials Science: Materials in Electronics12
Current Page: 1 / 10

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 10 of 156
  • Article
    Citation - WoS: 22
    Citation - Scopus: 22
    Wavelength Dependence of the Nonlinear Absorption Performance and Optical Limiting in Bi12tio20 Single Crystal
    (Elsevier, 2023) Pepe, Yasemin; Isik, Mehmet; Karatay, Ahmet; Gasanly, Nizami; Elmali, Ayhan
    In this study, the influence of excitation wavelength and input intensity on the nonlinear absorption (NA) mechanism and optical limiting behavior of the Bi12TiO20 (BTO) single crystal were reported. The energy band gap of the BTO single crystal was obtained to be 2.38 eV. Urbach energy revealed that the single crystal has a highly defective structure. Open aperture (OA) Z-scan experiments were conducted at 532 and 1064 nm exci-tation wavelengths at various input intensities. Obtained experimental data were analyzed with a theoretical model considering one photon, two-photon and free carrier absorption contributions to NA. The obtained results revealed that the BTO single crystal possesses NA. The NA coefficient increased with increasing input intensity at 532 nm excitation wavelength, while it decreased with increasing input intensity at 1064 nm excitation wave-length. Due to the intense localized defect states distribution at the energy of 532 nm excitation wavelength within the band gap, increasing contribution to NA came from one photon absorption (OPA), sequential two -photon absorption (TPA) and free carrier absorption (FCA) with increasing input intensity. The filling of the defect states at 1064 excitation wavelength caused a reduction in NA due to increasing saturable absorption with increasing input intensity. TPA coefficients were also found from the fitting ignoring the defect states. As ex-pected, the values of the nonlinear absorption coefficient beta eff are higher than that of the TPA coefficients for both excitation wavelengths. The optical limiting threshold of the BTO single crystal was obtained to be 6.62 mJ/cm2. The results of the present works indicated that BTO single crystal can be used as a potential optical limiter.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Interband Critical Points in Tlgax< Layered Mixed Crystals (0 ≤ x ≤ 1)
    (Elsevier Science Sa, 2013) Isik, M.; Işık, Mehmet; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    The layered semiconducting TlGaxIn1-xS2 mixed crystals (0 <= x <= 1) were studied by spectroscopic ellipsometry measurements in the 1.2-6.2 eV spectral range at room temperature. The spectral dependence of the components of the complex dielectric function, refractive index and extinction coefficient were revealed using an optical model. The interband transition energies in the studied samples were found from the analysis of the second-energy derivative spectra of the complex dielectric function. The variation of the obtained energies with composition were plotted to see the effect of the substitution of indium with gallium. Moreover, a simple diagram showing the revealed transitions in the available electronic band structure was given for TlGaS2 single crystals. (C) 2013 Elsevier B.V. All rights
  • Article
    Citation - WoS: 12
    Citation - Scopus: 14
    Excitation Wavelength Dependent Nonlinear Absorption Mechanisms and Optical Limiting Properties of Bi12sio20 Single Crystal
    (Elsevier, 2023) Dogan, Anil; Karatay, Ahmet; Isik, Mehmet; Pepe, Yasemin; Gasanly, Nizami; Elmali, Ayhan
    Nonlinear absorption mechanisms (NA), excitation wavelength dependence, and defect states of Bi12SiO20 (BSO) single crystal were investigated. The band gap and Urbach energies were found to be 2.51 and 0.4 eV from the absorption spectra. To evaluate the effect of excitation energy on the NA mechanism of the BSO single crystal, open aperture Z-scan experiment with 4 ns laser pulse at 532 and 1064 nm wavelengths with different intensities was performed. Obtained data were analyzed with a theoretical model considering the contributions of one photon absorption (OPA), two photon absorption (TPA) and free carrier absorption (FCA) to NA. The results indicated that the NA behavior decreased with increasing of the pump intensity as the defect states at around 2.32 eV by OPA at 532 nm, and TPA at 1064 nm excitations. The dominant NA mechanisms are OPA and sequential TPA at 532 nm as compared to the 1064 nm. A higher NA coefficient was obtained at 532 nm as compared to 1064 nm excitation. This observation was attributed to higher contribution of OPA at 532 nm even at lower input intensities compared to TPA contribution at 1064 nm. Onset optical limiting thresholds were found as 0.34 and 0.68 mJ/cm2 for 532 and 1064 nm input beams, respectively. In the light of the results, the BSO single crystal may be used as a saturable absorber or an optical limiter at convenient input intensity by effectively adjusting defect states and excitation wavelength.
  • Article
    Defect Characterization of Ga4se3< Layered Single Crystals by Thermoluminescence
    (indian Acad Sciences, 2016) Isik, M.; Delice, S.; Gasanly, N.
    Trapping centres in undoped Ga4Se3S single crystals grown by Bridgman method were characterized for the first time by thermoluminescence (TL) measurements carried out in the low-temperature range of 15-300 K. After illuminating the sample with blue light (similar to 470 nm) at 15 K, TL glow curve exhibited one peak around 74 K when measured with a heating rate of 0.4 K/s. The results of the various analysis methods were in good agreement about the presence of one trapping centre with an activation energy of 27 meV. Analysis of curve fitting method indicated that mixed order of kinetics dominates the trapping process. Heating rate dependence and distribution of the traps associated with the observed TL peak were also studied. The shift of peak maximum temperature from 74 to 113 K with increasing rate from 0.4 to 1.2 K/s was revealed. Distribution of traps was investigated using an experimental technique based on cleaning the centres giving emission at lower temperatures. Activation energies of the levels were observed to be increasing from 27 to 40 meV by rising the stopping temperature from 15 to 36 K.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Low-Temperature Thermoluminescence in Layered Structured Ga0.75in0.25< Single Crystals
    (Elsevier Science Sa, 2012) Isik, M.; Bulur, E.; Gasanly, N. M.
    Defect centers in Ga0.75In0.25Se single crystals have been studied performing the thermoluminescence measurements in the temperature range of 10-300 K. The observed glow curves were analyzed using curve fitting, initial rise, and different heating rate methods to determine the activation energies of the defect centers. Thermal cleaning process has been applied to decompose the overlapped curves. Four defect centers with activation energies of 9, 45,54 and 60 meV have been found as a result of the analysis. The capture cross sections and attempt-to-escape frequencies of the defect centers were also found using the curve fitting method under the light of theoretical predictions. The first order kinetics for the observed glow curve was revealed from the consistency between the theoretical predictions for slow retrapping and experimental results. Another indication of negligible retrapping was the independency of peak position from concentration of carriers trapped in defect levels. (C) 2012 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 141
    Citation - Scopus: 142
    CaXH3 (X = Mn, Fe, Co) perovskite-type hydrides for hydrogen storage applications
    (Wiley, 2020) Surucu, Gokhan; Gencer, Aysenur; Candan, Abdullah; Gullu, Hasan H.; Isik, Mehmet
    Hydrogen storage is one of the attractive research interests in recent years due to the advantages of hydrogen to be used as energy source. The studies on hydrogen storage applications focus mainly on investigation of hydrogen storage capabilities of newly introduced compounds. The present paper aims at characterization of CaXH3 (X: Mn, Fe, or Co) perovskite-type hydrides for the first time to understand their potential contribution to the hydrogen storage applications. CaXH3 compounds have been investigated by density functional theory studies to reveal their various characteristics and hydrogen storage properties. CaXH3 compounds have been optimized in cubic crystal structure and the lattice constants of studied compounds have been obtained as 3.60, 3.50, and 3.48 angstrom for X: Mn, Fe, and Co compounds, respectively. The optimized structures have negative formation enthalpies pointing out that studied compounds are thermodynamically stable and could be synthesized experimentally. The gravimetric hydrogen storage densities of X: Mn, Fe, and Co compounds were found in as 3.09, 3.06, and 2.97 wt%, respectively. The revealed values for hydrogen storage densities indicate that CaXH3 compounds may be potential candidates for hydrogen storage applications. Moreover, various mechanical parameters of interest compounds like elastic constants, bulk modulus, and Poisson's ratio have been reported throughout the study. These compounds were found mechanically stable with satisfying Born stability criteria. Further analyses based on Cauchy pressure and Pugh criterion, showed that they have brittleness nature and relatively hard materials. In addition, the electronic characteristics, band structures, and associated partial density of states of CaXH3 hydrides have been revealed. The dynamic stability behavior of them was verified based on the phonon dispersion curves.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 14
    Linear and Nonlinear Optical Properties of Bi12geo20 Single Crystal for Optoelectronic Applications
    (Elsevier Sci Ltd, 2023) Isik, M.; Gasanly, N. M.
    The present paper aims at presenting linear and nonlinear optical properties of Bi12GeO20 single crystals grown by Czochralski method. Transmission and reflection measurements were performed in the 400-1000 nm region. The recorded spectra were analyzed considering well-known optical models. Spectral dependencies of absorption coefficient, skin depth, refractive index, real and imaginary components of dielectric function were presented. The analyses performed on absorption coefficient showed direct bandgap and Urbach energies as 2.56 and 0.22 eV, respectively. The first-and third-order nonlinear susceptibilities and nonlinear refractive index of the crystal were also reported in the present work. The results of the present paper would provide valuable information for optoelectronic device applications of Bi12GeO20.
  • Article
    Citation - WoS: 23
    Citation - Scopus: 25
    Investigation of Optical Properties of Bi12geo20< Sillenite Crystals by Spectroscopic Ellipsometry and Raman Spectroscopy
    (Elsevier Sci Ltd, 2020) Isik, M.; Delice, S.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    Bi12GeO20 (BGO) compound is one of the fascinating members of sillenites group due to its outstanding photorefractive and photocatalytic characteristics. The present paper aims at investigating optical properties of BGO crystals by means of spectroscopic ellipsometry and Raman spectroscopy measurements. Bi12GeO20 single crystals grown by Czochralski method were structurally characterized by X-ray diffraction (XRD) experiments and the analyses showed that studied crystals have cubic crystalline structure. Raman spectrum exhibited 15 peaks associated with A, E and F modes. Spectroscopic ellipsometry measurement data achieved in the energy region between 1.2 and 6.2 eV were used in the air/sample optical model to get knowledge about complex pseudodielectric constant, pseudorefractive index, pseudoextinction and absorption coefficients of the crystals. Spectral change of real and imaginary part of complex pseudodielectric constant were discussed in detail. Band gap energy of Bi12GeO20 single crystals was calculated to be 3.18 eV using absorption coefficient dependency on photon energy. Critical point energies at which photons are strongly absorbed were determined by utilizing the second energy derivative spectra of components of complex pseudodielectric function. Fitting of both spectra resulted in the presence of four interband transitions with energies of 3.49, 4.11, 4.67 and 5.51 eV.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 5
    Growth and Characterization of Pbmo0.75w0.25o4 Single Crystal: a Promising Material for Optical Applications
    (Elsevier Science Sa, 2023) Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    The present paper reports the structural and optical properties of PbMo0.75W0.25O4 single crystals grown by Czochralski method. XRD pattern of the crystal indicated well-defined two diffraction peaks associated with tetragonal crystalline structure. Raman and infrared spectra of the grown single crystals were presented to get information about the vibrational characteristics. Observed Raman modes were associated with modes of PbMoO4 and PbWO4. Eight bands were revealed in the infrared spectrum. The bands observed in the spectrum were attributed to multiphonon absorption processes. Transmission spectrum was measured in the 375-700 nm spectral region. The analyses of the spectrum resulted in direct band gap energy of 3.12 +/- 0.03 eV. The compositional dependent band gap energy plot was drawn considering the reported band gap energies of PbMoO4, PbWO4 and revealed band gap of PbMo0.75W0.25O4 single crystal. An almost linear behavior of composition-band gap energy was seen for PbMo1-xWxO4 compounds. Urbach energy was also found from the absorption coefficient analysis as 0.082 +/- 0.002 eV.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Low Temperature Thermoluminescence of Gd2o3< Nanoparticles Using Various Heating Rate and tmax< - texc< Methods
    (Elsevier, 2019) Delice, Serdar; Isik, Mehmet; Gasanly, Nizami M.
    Thermoluminescence (FL) measurements for Gd2O3 nanoparticles were carried out for various heating rates between 0.3 and 0.8 K/s at low temperatures (10-280 K). TL spectrum exhibited two observable and one faint peaks in the temperature region of 10-100 K, and four peaks in the temperature region of 160-280 K. Heating rate analysis was achieved to understand the behaviors of trap levels. It was seen that the peak maximum temperatures and TL intensities of all peaks increase with increasing heating rate. This behavior was ascribed to anomalous heating rate effect. T-max - T(exc )analysis was accomplished for TL, peaks at relatively higher temperature region to reveal the related traps depths. T-max - T-exc plot presented a staircase structure indicating that the TL glow curve is composed of well separated glow peaks. Mean activation energies of trapping centers corresponding to these separated peaks were found as 0.43, 0.50, 0.58 and 0.80 eV.