Işık, Mehmet

Loading...
Profile Picture
Name Variants
Mehmet, Işık
M.,Işık
Isik, Mehmet
Mehmet, Isik
I., Mehmet
I.,Mehmet
Işık,M.
Isik,M.
I.,Mehmet
M.,Isik
Işık, Mehmet
M., Isik
Isik, M.
Job Title
Profesör Doktor
Email Address
mehmet.isik@atilim.edu.tr
Main Affiliation
Department of Electrical & Electronics Engineering
Status
Former Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

0

Research Products

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

0

Research Products

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

1

Research Products

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

0

Research Products

1

NO POVERTY
NO POVERTY Logo

0

Research Products

5

GENDER EQUALITY
GENDER EQUALITY Logo

0

Research Products

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

0

Research Products

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

0

Research Products

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo

0

Research Products

15

LIFE ON LAND
LIFE ON LAND Logo

1

Research Products

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

0

Research Products

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

11

Research Products

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

0

Research Products

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

0

Research Products

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

0

Research Products

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

1

Research Products

13

CLIMATE ACTION
CLIMATE ACTION Logo

0

Research Products
This researcher does not have a Scopus ID.
This researcher does not have a WoS ID.
Scholarly Output

173

Articles

169

Views / Downloads

442/794

Supervised MSc Theses

3

Supervised PhD Theses

0

WoS Citation Count

1806

Scopus Citation Count

1866

WoS h-index

20

Scopus h-index

20

Patents

0

Projects

0

WoS Citations per Publication

10.44

Scopus Citations per Publication

10.79

Open Access Source

11

Supervised Theses

3

Google Analytics Visitor Traffic

JournalCount
Optical Materials17
Physica B: Condensed Matter16
Journal of Luminescence15
Materials Science in Semiconductor Processing14
Journal of Materials Science: Materials in Electronics12
Current Page: 1 / 10

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Interband Critical Points in Tlgax< Layered Mixed Crystals (0 ≤ x ≤ 1)
    (Elsevier Science Sa, 2013) Isik, M.; Işık, Mehmet; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    The layered semiconducting TlGaxIn1-xS2 mixed crystals (0 <= x <= 1) were studied by spectroscopic ellipsometry measurements in the 1.2-6.2 eV spectral range at room temperature. The spectral dependence of the components of the complex dielectric function, refractive index and extinction coefficient were revealed using an optical model. The interband transition energies in the studied samples were found from the analysis of the second-energy derivative spectra of the complex dielectric function. The variation of the obtained energies with composition were plotted to see the effect of the substitution of indium with gallium. Moreover, a simple diagram showing the revealed transitions in the available electronic band structure was given for TlGaS2 single crystals. (C) 2013 Elsevier B.V. All rights
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Thermally Stimulated Current Measurements in Undoped Ga3inse4< Single Crystals
    (Pergamon-elsevier Science Ltd, 2011) Isik, M.; Işık, Mehmet; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    The trap levels in nominally undoped Ga3InSe4 crystals were investigated in the temperature range of 10-300 K using the thermally stimulated currents technique. The study of trap levels was accomplished by the measurements of current flowing along the c-axis of the crystal. During the experiments we utilized a constant heating rate of 0.8 K/s. Experimental evidence is found for one hole trapping center in the crystal with activation energy of 62 meV. The analysis of the experimental TSC curve gave reasonable results under the model that assumes slow retrapping. The capture cross-section of the trap was determined as 1.0 x 10(-25) cm(2) with concentration of 1.4 x 10(17) cm(-3). (C) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 12
    First Principles Study of Bi12geo20< Electronic, Optical and Thermodynamic Characterizations
    (Elsevier, 2021) Isik, M.; Işık, Mehmet; Surucu, G.; Gencer, A.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    Bismuth germanium oxide (Bi12GeO20) is one of the attractive members of sillenite compounds having fascinating photorefractive characteristics. The electronic, optical and thermodynamic properties of Bi12GeO20 were investigated using density functional theory (DFT) calculations. The experimental and calculated X-ray diffraction patterns were obtained as well-consistent with each other. The lattice constant of the cubic crystalline structure of Bi12GeO20 compound was calculated as 10.304 angstrom. The electronic band structure and partial density of states plots were reported and contribution of constituent atoms (Bi12GeO20) to the valence and conduction bands was presented. The band gap energy of the Bi12GeO20 was calculated as 3.20 eV. This wide direct band gap energy provides Bi12GeO20 significant potential in ultraviolet applications. The spectra of real and imaginary components of dielectric function, refractive index, extinction coefficient and absorption coefficient were drawn in the 0-10 eV energy range. Temperature-dependent heat capacity plot indicated the Dulong-Petit limit as 825 J/mol.K. The results of the present study would present worthwhile information to device application areas of Bi12GeO20 compound.