Browsing by Author "Yersal, Nilgun"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Book Part Citation - WoS: 15Citation - Scopus: 15Comparison of Hematopoietic and Spermatogonial Stem Cell Niches From the Regenerative Medicine Aspect(Springer international Publishing Ag, 2018) Kose, Sevil; Yersal, Nilgun; Onen, Selin; Korkusuz, PetekRecent advances require a dual evaluation of germ and somatic stem cell niches with a regenerative medicine perspective. For a better point of view of the niche concept, it is needed to compare the microenvironments of those niches in respect to several components. The cellular environment of spermatogonial stem cells' niche consists of Sertoli cells, Leydig cells, vascular endothelial cells, epididymal fat cells, peritubular myoid cells while hematopoietic stem cells have mesenchymal stem cells, osteoblasts, osteoclasts, megacaryocytes, macrophages, vascular endothelial cells, pericytes and adipocytes in their microenvironment. Not only those cells', but also the effect of the other factors such as hormones, growth factors, chemokines, cytokines, extracellular matrix components, biomechanical forces (like shear stress, tension or compression) and physical environmental elements such as temperature, oxygen level and pH will be clarified during the chapter. Because it is known that the microenvironment has an important role in the stem cell homeostasis and disease conditions, it is crucial to understand the details of the microenvironment and to be able to compare the niche concepts of the different types of stem cells from each other, for the regenerative interventions. Indeed, the purpose of this chapter is to point out the usage of niche engineering within the further studies in the regenerative medicine field. Decellularized, synthetic or non-synthetic scaffolds may help to mimic the stem cell niche. However, the shared or different characteristics of germ and somatic stem cell microenvironments are necessary to constitute a proper niche model. When considered from this aspect, it is possible to produce some strategies on the personalized medicine by using those artificial models of stem cell microenvironment.Article Citation - WoS: 14Citation - Scopus: 15Leptin Promotes Proliferation of Neonatal Mouse Stem/Progenitor Spermatogonia(Springer/plenum Publishers, 2020) Yersal, Nilgun; Kose, Sevil; Horzum, Utku; Ozkavukcu, Sinan; Orwig, Kyle E.; Korkusuz, PetekPurpose To keep and increase spermatogonial stem cell number (SSC) is the only available option for pediatric cancer survivors to maintain fertility. Leptin is secreted by the epididymal white adipose tissue and has receptors on stem/progenitor spermatogonia. The purpose of this study is to demonstrate dose- and time-dependent proliferative effect of leptin on stem/progenitor spermatogonia cultures from prepubertal mice testes. Methods CD90.2 (+) stem/progenitor spermatogonia were isolated from the C57BL/6 mouse testis on postnatal day 6 and placed in culture. The proliferative effect of leptin supplementation was assessed by colony formation (diameter and number), WST proliferation assays, and xCELLigence real-time cell analysis (RTCA) on days 3, 5, and 7 of culture. Expressions of p-ERK1/2, p-STAT3, total STAT3, and p-SHP2 levels were determined by western blot analysis. Results Leptin supplementation of 100 ng/ml increased the diameter (p= 0.001) and number (p= 0.01) of colonies in stem/progenitor spermatogonial cultures and caused higher proliferation by WST-1 (p= 0.009) compared with the control on day 7. The EC50 was calculated as 114 ng/ml for leptin by RTCA. Proliferative dose of leptin induced increased expression of p-ERK1/2 (p= 0.009) and p-STAT3 (p= 0.023) on stem/progenitor spermatogonia when compared with the untreated group. Conclusion The results indicated that leptin supplementation exhibited a dose- and time-dependent proliferative effect on stem/progenitor spermatogonia that was associated with increased expression of ERK1/2 and STAT3 pathways while maintaining their undifferentiated state. This output presents a new agent that may help to expand the stem/progenitor spermatogonia pool from the neonatal testis in order to autotransplant after cancer treatment.Book Part Citation - WoS: 5Citation - Scopus: 9Magnetic-Based Cell Isolation Technique for the Selection of Stem Cells(Humana Press inc, 2019) Korkusuz, Petek; Kose, Sevil; Yersal, Nilgun; Onen, SelinMagnetic-activated cell sorting (MACS) is the technology that is recently used as a magnetic-based cell isolation/purification technique. This technique enables the isolation and selection of germ, hematopoietic, and somatic stem cells including skin stem cells (SkSCs). Here, we have tried to describe the isolation of stem cells by MACS using CD34 antigen for SkSCs, again CD34 for hematopoietic stem cells (HSCs) and Thy-1 for spermatogonial stem cells (SpSCs). MACS allowed the isolation of CD34+, CD34+, and Thy-1+ human SkSCs, HSCs, and SpSCs with minimum 98% purity.Article Citation - WoS: 22Citation - Scopus: 26Mesenchymal Stem Cells Promote Spermatogonial Stem/Progenitor Cell Pool and Spermatogenesis in Neonatal Mice in Vitro(Nature Portfolio, 2022) Onen, Selin; Kose, Sevil; Yersal, Nilgun; Korkusuz, PetekPrepubertal cancer treatment leads to irreversible infertility in half of the male patients. Current in vitro spermatogenesis protocols and cryopreservation techniques are inadequate to expand spermatogonial stem/progenitor cells (SSPC) from testicles. Bone marrow derived mesenchymal stem cells (BM-MSC) bearing a close resemblance to Sertoli cells, improved spermatogenesis in animal models. We asked if a co-culture setup supported by syngeneic BM-MSC that contributes to the air-liquid interphase (ALI) could lead to survival, expansion and differentiation of SSPCs in vitro. We generated an ALI platform able to provide a real-time cellular paracrine contribution consisting of syngeneic BM-MSCs to neonatal C57BL/6 mice testes. We aimed to evaluate the efficacy of this culture system on SSPC pool expansion and spermatogenesis throughout a complete spermatogenic cycle by measuring the number of total germ cells (GC), the undifferentiated and differentiating spermatogonia, the spermatocytes and the spermatids. Furthermore, we evaluated the testicular cell cycle phases, the tubular and luminal areas using histochemical, immunohistochemical and flow cytometric techniques. Cultures in present of BM-MSCs displayed survival of ID4(+) spermatogonial stem cells (SSC), expansion of SALL4(+) and OCT4(+) SSPCs, VASA(+) total GCs and Ki67(+) proliferative cells at 42 days and an increased number of SCP3(+) spermatocytes and Acrosin(+) spermatids at 28 days. BM-MSCs increased the percentage of mitotic cells within the G2-M phase of the total testicular cell cycle increased for 7 days, preserved the cell viability for 42 days and induced testicular maturation by enlargement of the tubular and luminal area for 42 days in comparison to the control. The percentage of PLZF(+) SSPCs increased within the first 28 days of culture, after which the pool started to get smaller while the number of spermatocytes and spermatids increased simultaneously. Our findings established the efficacy of syngeneic BM-MSCs on the survival and expansion of the SSPC pool and differentiation of spermatogonia to round spermatids during in vitro culture of prepubertal mice testes for 42 days. This method may be helpful in providing alternative cures for male fertility by supporting in vitro differentiated spermatids that can be used for round spermatid injection (ROSI) to female oocyte in animal models. These findings can be further exploited for personalized cellular therapy strategies to cure male infertility of prepubertal cancer survivors in clinics.

