Leptin promotes proliferation of neonatal mouse stem/progenitor spermatogonia

No Thumbnail Available

Date

2020

Authors

Köse, Sevil
Kose, Sevil
Horzum, Utku
Ozkavukcu, Sinan
Orwig, Kyle E.
Korkusuz, Petek

Journal Title

Journal ISSN

Volume Title

Publisher

Springer/plenum Publishers

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Nutrition and Dietetics
(2017)
Student admission to the Atılım University Department of Nutrition and Dietetics started in 2017. Our Department is the only academic institution to offer undergraduate-level education completely in English in the field of Nutrition and Dietetics in Ankara. The studies of our department may be classified into two main categories; education and research. The current education programs are offered taking into consideration the awareness of the responsibility in offering a degree in Nutrition and Dietetics; by competent instructors in the field, and with an inter-disciplinary approach. Our aim for the future alumni of our undergraduate program is to undertake their responsibilities in the light of their information with a professional insight, and the confidence to constantly update themselves at hospitals, polyclinics, public health centers, ministries, catering institutions, food companies, universities and such where they may be employed in positions such as health care professionals, academicians, researchers, directors or policy makers.

Journal Issue

Abstract

Purpose To keep and increase spermatogonial stem cell number (SSC) is the only available option for pediatric cancer survivors to maintain fertility. Leptin is secreted by the epididymal white adipose tissue and has receptors on stem/progenitor spermatogonia. The purpose of this study is to demonstrate dose- and time-dependent proliferative effect of leptin on stem/progenitor spermatogonia cultures from prepubertal mice testes. Methods CD90.2 (+) stem/progenitor spermatogonia were isolated from the C57BL/6 mouse testis on postnatal day 6 and placed in culture. The proliferative effect of leptin supplementation was assessed by colony formation (diameter and number), WST proliferation assays, and xCELLigence real-time cell analysis (RTCA) on days 3, 5, and 7 of culture. Expressions of p-ERK1/2, p-STAT3, total STAT3, and p-SHP2 levels were determined by western blot analysis. Results Leptin supplementation of 100 ng/ml increased the diameter (p= 0.001) and number (p= 0.01) of colonies in stem/progenitor spermatogonial cultures and caused higher proliferation by WST-1 (p= 0.009) compared with the control on day 7. The EC50 was calculated as 114 ng/ml for leptin by RTCA. Proliferative dose of leptin induced increased expression of p-ERK1/2 (p= 0.009) and p-STAT3 (p= 0.023) on stem/progenitor spermatogonia when compared with the untreated group. Conclusion The results indicated that leptin supplementation exhibited a dose- and time-dependent proliferative effect on stem/progenitor spermatogonia that was associated with increased expression of ERK1/2 and STAT3 pathways while maintaining their undifferentiated state. This output presents a new agent that may help to expand the stem/progenitor spermatogonia pool from the neonatal testis in order to autotransplant after cancer treatment.

Description

köse, sevil/0000-0003-2188-9534; KORKUSUZ, PETEK/0000-0002-7553-3915; Horzum, Utku/0000-0002-6747-3043; Ozkavukcu, Sinan/0000-0003-4525-9027

Keywords

Stem, progenitor spermatogonia, Leptin, Proliferation, p-STAT3, p-ERK1, 2

Turkish CoHE Thesis Center URL

Fields of Science

Citation

10

WoS Q

Q2

Scopus Q

Q2

Source

Volume

37

Issue

11

Start Page

2825

End Page

2838

Collections