Browsing by Author "Varan, Cem"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 12-Ag and Bone Marrow-Targeted Pcl Nanoparticles as Nanoplatforms for Hematopoietic Cell Line Mobilization(Bmc, 2024) Kose, Sevil; Varan, Cem; Onen, Selin; Nemutlu, Emirhan; Bilensoy, Erem; Korkusuz, Petek; Basic Sciences; Nutrition and DieteticsBackgroundThe use of mobilizing agents for hematopoietic stem cell (HSC) transplantation is insufficient for an increasing number of patients. We previously reported lipid made endocannabinoid (eCB) ligands act on the human bone marrow (hBM) HSC migration in vitro, lacking long term stability to be therapeutic candidate. In this study, we hypothesized if a novel 2-AG-loaded polycaprolactone (PCL)-based nanoparticle delivery system that actively targets BM via phosphatidylserine (Ps) can be generated and validated.MethodsPCL nanoparticles were prepared by using the emulsion evaporation method and characterized by Zetasizer and scanning electron microscopy (SEM). The encapsulation efficiency and release profile of 2-AG were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of cannabinoid receptors (CBRs) in HSCs and monocytes was detected by flow cytometry. Cell morphology and viability were assessed using transmission electron microscopy (TEM), SEM, and the WST-1 viability assay. The migration efficacy of the 2-AG and 2-AG-loaded nanoparticle delivery system on HSCs and HPSCs (TF-1a and TF-1) and monocytes (THP-1) was evaluated using a transwell migration assay.ResultsThe 140-225 nm PCL nanoparticles exhibited an increasing polydispersity index (PDI) after the addition of Ps and 2-AG, with a surface charge ranging from - 25 to -50 mV. The nanoparticles released up to 36% of 2-AG within the first 8 h. The 2-AG-Ps-PCL did not affect cellular viability compared to control on days 5 and 10. The HSCs and monocytes expressed CB1R and CB2R and revealed increased migration to media containing 1 mu M 2-AG-Ps-PCL compared to control. The migration rate of the HSCs toward monocytes incubated with 1 mu M 2-AG-Ps-PCL was higher than that of the monocytes of control. The 2-AG-Ps-PCL formulation provided a real time mobilization efficacy at 1 mu M dose and 8 h time window via a specific CBR agonism.ConclusionThe newly generated and validated 2-AG-loaded PCL nanoparticle delivery system can serve as a stable, long lasting, targeted mobilization agent for HSCs and as a candidate therapeutic to be included in HSC transplantation (HSCT) protocols following scale-up in vivo preclinical and subsequent clinical trials.Article Citation - WoS: 24Citation - Scopus: 25Acpa Decreases Non-Small Cell Lung Cancer Line Growth Through Akt/Pi3k and Jnk Pathways in Vitro(Springernature, 2021) Boyacioglu, OEzge; Bilgic, Elif; Varan, Cem; Bilensoy, Erem; Nemutlu, Emirhan; Sevim, Duygu; Korkusuz, Petek; Basic SciencesTherapeutic agents used for non-small cell lung cancer (NSCLC) have limited curative efficacy and may trigger serious adverse effects. Cannabinoid ligands exert antiproliferative effect and induce apoptosis on numerous epithelial cancers. We confirmed that CB1 receptor (CB1R) is expressed in NSCLC cells in this study. Arachidonoylcyclopropylamide (ACPA) as a synthetic, CB1R-specific ligand decreased proliferation rate in NSCLC cells by WST-1 analysis and real-time proliferation assay (RTCA). The half-maximal inhibitory concentration (IC50) dose of ACPA was calculated as 1.39x10(-12)M. CB1 antagonist AM281 inhibited the antiproliferative effect of ACPA. Flow cytometry and ultrastructural analyzes revealed significant early and late apoptosis with diminished cell viability. Nano-immunoassay and metabolomics data on activation status of CB1R-mediated pro-apoptotic pathways found that ACPA inhibited Akt/PI3K pathway, glycolysis, TCA cycle, amino acid biosynthesis, and urea cycle and activated JNK pathway. ACPA lost its chemical stability after 24hours tested by liquid chromatography-mass spectrometry (LC-MS/MS) assay. A novel ACPA-PCL nanoparticle system was developed by nanoprecipitation method and characterized. Sustained release of ACPA-PCL nanoparticles also reduced proliferation of NSCLC cells. Our results demonstrated that low dose ACPA and ACPA-PCL nanoparticle system harbor opportunities to be developed as a novel therapy in NSCLC patients that require further in vivo studies beforehand to validate its anticancer effect.Article Citation - WoS: 1Citation - Scopus: 1A Novel Injectable Nanotherapeutic Platform Increasing the Bioavailability and Anti-Tumor Efficacy of Arachidonylcyclopropylamide on an Ectopic Non-Small Cell Lung Cancer Xenograft Model: A Randomized Controlled Trial(Elsevier, 2025) Boyacioglu, Ozge; Varan, Cem; Bilensoy, Erem; Aykut, Zaliha Gamze; Recber, Tuba; Nemutlu, Emirhan; Korkusuz, Petek; Basic SciencesRapid progressing non-small cell lung adenocarcinoma (NSCLC) decreases treatment success. Cannabinoids emerge as drug candidates for NSCLC due to their anti-tumoral capabilities. We previously reported the controlled release of Arachidonylcyclopropylamide (ACPA) selectively targeting cannabinoid 1 (CB1) receptor in NSCLC cells in vitro. Hydrophobic polymers like polycaprolactone (PCL) offer prolonged circulation time and slower drug clearance which is suitable for hydrophobic molecules like ACPA. Thus, the extended circulation time with enhanced bioavailability and half-life of nanoparticular ACPA is crucial for its therapeutic performance in the tumor area. We assumed that a novel high technology-controlled release system increasing the bioavailability of ACPA compared to free ACPA could be transferred to the clinic when validated in vivo. Plasma profile of ACPA and ACPA-loaded PCL-based nanomedicine by LC-MS/MS and complete blood count (CBC) was assessed in wild-type Balb/c mice. Tumor growth in nanomedicine-applied NSCLC-induced athymic nude mice was assessed using bioluminescence imaging (BLI) and caliper measurements, histomorphometry,immunohistochemistry, TUNEL assay, and Western blot on days 7-21. Injectable NanoACPA increased its systemic exposure to tissues 5.5 times and maximum plasma concentration 6 times higher than free ACPA by substantially improving bioavailability. The potent effect of NanoACPA lasted for at least two days on ectopic NSCLC model through Akt/PI3K, Ras/MEK/Erk, and JNK pathways that diminished Ki-67 proliferative and promoted TUNEL apoptotic cell scores on days 7-21. The output reveals that NanoACPA platform could be a chemotherapeutic for NSCLC in the clinic following scale-up GLP/GMP-based phase trials, owing to therapeutic efficacy at a safe low dose window.
