1. Home
  2. Browse by Author

Browsing by Author "Gasanly, Nizami"

Filter results by typing the first few letters
Now showing 1 - 19 of 19
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Analysis of Glow Curve of Gas0.5se0.5< Single Crystals
    (Elsevier Science Bv, 2015) Isik, Mehmet; Delice, Serdar; Gasanly, Nizami; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Characterization of shallow trapping centers in GaS0.5Se0.5 crystals grown by a Bridgman method was carried out in the present work using thermoluminescence (TL) measurements performed in the low temperature range of 10-300 K. The activation energies of the trapping centers were obtained under the light of results of various analysis methods. The presence of three trapping centers located at 6, 30 and 72 meV was revealed. The analysis of the experimental glow curve gave reasonable results under the model that assumes slow retrapping which states the order of kinetics as b=1. Heating rate dependence of the observed TL peaks was studied for the rates between 0.4 and 1.0 K/s. Distribution of the traps was also investigated using an experimental technique based on the thermal cleaning of centers giving emission at lower temperatures. The distributed levels with activation energies increasing from 6 to 136 meV were revealed by increasing the stopping temperature from 10 to 52 K. (C) 2015 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Analysis of Optical Constants and Temperature-Dependent Absorption Edge of Gas0.75se0.25< Layered Crystals
    (Pergamon-elsevier Science Ltd, 2017) Isik, Mehmet; Gasanly, Nizami; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    GaS0.75Se0.25 single crystals were optically characterized through transmission and reflection measurements in the wavelength range of 450-1000 nm. Derivative spectrophotometry analyses on temperature dependent transmittance spectra showed that band gap energies of the crystal increase from 239 eV (T=300 K) to 2.53 eV (T=10 K). Band gap at zero temperature, average phonon energy, electron phonon coupling parameter and rates of change of band gap energy with temperature were found from the temperature dependences of band gap energies under the light of different models reported in literature. Furthermore, the dispersion of room temperature refractive index was discussed in terms of single effective oscillator model. The refractive index dispersion parameters, namely oscillator and dispersion energies, zero-frequency refractive index, were determined as a result of analyses. (C) 2017 Elsevier Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 27
    Citation - Scopus: 29
    Composition-tuned band gap energy and refractive index in GaSxSe1-x layered mixed crystals
    (Elsevier Science Sa, 2017) Isik, Mehmet; Gasanly, Nizami; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Transmission and reflection measurements on GaSxSe1-x mixed crystals (0 <= x <= 1) were carried out in the 400-1000 nm spectral range. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance and reflectance. The compositional dependence of band gap energy revealed that as sulfur (selenium) composition is increased (decreased) in the mixed crystals, band gap energy increases quadratically from 1.99 eV (GaSe) to 2.55 eV (GaS). Spectral dependencies of refractive indices of the mixed crystals were plotted using the reflectance spectra. It was observed that refractive index decreases nearly in a linear behavior with increasing band gap energy for GaSxSe1-x mixed crystals. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements. The atomic compositions of the studied crystals are well-matched with composition x increasing from 0 to 1 by intervals of 0.25. (C) 2016 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Ellipsometric Study of Optical Properties of Gasxse1-x< Layered Mixed Crystals
    (Elsevier Science Bv, 2016) Isik, Mehmet; Gasanly, Nizami; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Spectroscopic ellipsometry measurements were performed on GaSxSe1-x mixed crystals (0 <= x <= 1) in the 1.2-6.2 eV range. Spectral dependence of optical parameters; real and imaginary components of pseudodielectric function, pseudorefractive index and pseudoextinction coefficient were reported in the present work. Critical point (CP) analyses on second-energy derivative spectra of the pseudodielectric function were accomplished to find the interband transition energies. The revealed energy values were associated with each other taking into account the fact that band gap energy of mixed crystals rises with increase in sulfur content. The variation of CP energies with composition (x) was also plotted. Peaks in the spectra of studied optical parameters and CP energy values were observed to be shifted to higher energy values as sulfur concentration is increased in the mixed crystals. (C) 2016 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Ellipsometry Study of Optical Parameters of Agin5s8< Crystals
    (Elsevier, 2015) Isik, Mehmet; Gasanly, Nizami; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Agln(5)S(8) crystals grown by Bridgman method were characterized for optical properties by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficient were obtained from ellipsometiy experiments carried out in the 1.2-6.2 eV range. Direct band gap energy of 1.84 eV was found from the analysis of absorption coefficient vs. photon energy. The oscillator energy, dispersion energy and zero-frequency refractive index, high-frequency dielectric constant values were found from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. Crystal structure and atomic composition ratio of the constituent elements in the AgIn5S8 crystal were revealed from structural characterization techniques of X-ray diffraction and energy dispersive spectroscopy. (C) 2015 Elsevier B.V. All rights reserved
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 11
    Citation - Scopus: 12
    Excitation Wavelength Dependent Nonlinear Absorption Mechanisms and Optical Limiting Properties of Bi12sio20 Single Crystal
    (Elsevier, 2023) Dogan, Anil; Karatay, Ahmet; Isik, Mehmet; Pepe, Yasemin; Gasanly, Nizami; Elmali, Ayhan; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Nonlinear absorption mechanisms (NA), excitation wavelength dependence, and defect states of Bi12SiO20 (BSO) single crystal were investigated. The band gap and Urbach energies were found to be 2.51 and 0.4 eV from the absorption spectra. To evaluate the effect of excitation energy on the NA mechanism of the BSO single crystal, open aperture Z-scan experiment with 4 ns laser pulse at 532 and 1064 nm wavelengths with different intensities was performed. Obtained data were analyzed with a theoretical model considering the contributions of one photon absorption (OPA), two photon absorption (TPA) and free carrier absorption (FCA) to NA. The results indicated that the NA behavior decreased with increasing of the pump intensity as the defect states at around 2.32 eV by OPA at 532 nm, and TPA at 1064 nm excitations. The dominant NA mechanisms are OPA and sequential TPA at 532 nm as compared to the 1064 nm. A higher NA coefficient was obtained at 532 nm as compared to 1064 nm excitation. This observation was attributed to higher contribution of OPA at 532 nm even at lower input intensities compared to TPA contribution at 1064 nm. Onset optical limiting thresholds were found as 0.34 and 0.68 mJ/cm2 for 532 and 1064 nm input beams, respectively. In the light of the results, the BSO single crystal may be used as a saturable absorber or an optical limiter at convenient input intensity by effectively adjusting defect states and excitation wavelength.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 8
    Citation - Scopus: 9
    Experimental and Theoretical Investigation of the Mechanical Characteristics of Sillenite Compound: Bi12geo20<
    (Elsevier Science Sa, 2021) Surucu, Gokhan; Isik, Mehmet; Gencer, Aysenur; Gasanly, Nizami; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    The present study reports the mechanical and elastic characteristics of Bi12GeO20 (BGO) compound by experimental nanoindentation measurements and density functional theory (DFT) calculations. X-ray diffraction pattern of BGO was plotted and revealed diffraction peaks were associated with Miller indices of cubic crystalline structure with lattice constant of a = 10.304 angstrom. Two- and three-dimensional representations of Young's modulus, linear compressibility, shear modulus and Poisson's ratio were presented according to DFT calculations. The calculated elastic constants pointed out the mechanically stable and anisotropic behavior of the BGO. The hardness and Young's modulus ranges of the BGO calculated from DFT studies were found as 3.7-6.3 GPa and 61.7-98.9 GPa, respectively. Hardness and Young's modulus of BGO single crystal were also obtained by analyzing force-dependent nanoindentation experimental data. It was observed that hardness and Young's modulus decrease with increase of load in the low applied loads and then reaches saturation in the high applied loads. This behavior is known as indentation size effect. True hardness value was determined from proportional specimen resistance model as 4.1 GPa. The force independent region presented the Young's modulus as 114 GPa. (C) 2021 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 20
    Citation - Scopus: 20
    Nonlinear Optical Absorption Characteristics of Pbmoo4 Single Crystal for Optical Limiter Applications
    (Elsevier, 2022) Pepe, Yasemin; Isik, Mehmet; Karatay, Ahmet; Gasanly, Nizami; Elmali, Ayhan; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Molybdate materials take great interest due to their photocatalytic and optoelectronic applications. In this report, PbMoO4 single crystal, one of the member of molybdate materials, is grown by Czochralski technique and the change of nonlinear absorption characteristic depending on the input intensity was reported. Linear absorption analysis revealed the band gap energy and Urbach energy as to be 3.12 and 0.52 eV, respectively. Nonlinear absorption characteristics of the PbMoO4 single crystal was examined with the open aperture (OA) Z-scan experiments at 532 nm excitation wavelength under various input intensities. Fitting results of the OA Z-scan experiments indicated that PbMoO4 single crystal has nonlinear absorption (NA) behavior, and NA coefficient (beta(eff)) increased from 7.11 x 10(-8) to 1.96 x 10(-7) m/W with increasing input intensity. This observation was associated with the increase of the contribution of the free carrier absorption to the NA with the generation of more excited electrons with increasing input intensity. At the 532 nm excitation wavelength (2.32 eV), the dominant mechanisms were revealed as one photon and free carrier absorptions. The optical limiting threshold of the PbMoO4 single crystal was obtained to be 4.91 mJ/cm(2). The reported results indicated that PbMoO4 single crystal can be a good optical limiter in the visible wavelength region due to its effective NA behavior.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Optical and Nanomechanical Properties of Ga2se3< Crystals and Thin Films
    (Springer, 2021) Isik, Mehmet; Emir, Cansu; Gullu, Hasan Huseyin; Gasanly, Nizami; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    The optical and nanomechanical properties of Ga(2)Se(3)single crystals and thin films were investigated using reflection, transmission, and nanoindentation measurements. The reflection spectrum recorded in the 525- to 1100-nm range was analyzed to get the band gap energy of the crystal structure, and derivative analysis of the spectrum resulted in band gap energy of 1.92 eV which was attributed to indirect transition. The band gap energy of thermally evaporated Ga(2)Se(3)thin film was determined from the analysis of the transmittance spectrum. The absorption coefficient analysis presented the direct band gap energy as 2.60 eV. The refractive index was investigated in the transparent region using the Wemple-DiDomenico single-oscillator model. Nanoindentation measurements were carried out on the crystal and thin film structures of Ga2Se3. Nanohardness and elastic modulus of the Ga(2)Se(3)single crystals and thin films were calculated following the Oliver-Pharr analysis method.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Optical Characterization of Cuin5s8< Crystals by Ellipsometry Measurements
    (Pergamon-elsevier Science Ltd, 2016) Isik, Mehmet; Gasanly, Nizami; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Optical properties of CuIn5S8 crystals grown by Bridgman method were investigated by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficients were obtained from the analysis of ellipsometry experiments performed in the 1.2-6.2 eV spectral region. Analysis of spectral dependence of the absorption coefficient revealed the existence of direct band gap transitions with energy 1.53 eV. Wemple-DiDomenico and Spitzer-Fan models were used to find the oscillator energy, dispersion energy, zero-frequency refractive index and high-frequency dielectric constant values. Structural properties of the CuIn5S8 crystals were investigated using X-ray diffraction and energy dispersive spectroscopy analysis. (C) 2015 Elsevier Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Optical Characterization of Ga2ses Layered Crystals by Transmission, Reflection and Ellipsometry
    (World Scientific Publ Co Pte Ltd, 2015) Isik, Mehmet; Gasanly, Nizami; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Optical properties of Ga2SeS crystals grown by Bridgman method were investigated by transmission, reflection and ellipsometry measurements. Analysis of the transmission and reflection measurements performed in the wavelength range of 400-1100 nm at room temperature indicated the presence of indirect and direct transitions with 2.28 eV and 2.38 eV band gap energies. Ellipsometry measurements were carried out in the 1.2-6.0 eV spectral region to get information about optical constants, real and imaginary parts of the pseudodielectric function. Moreover, the critical point (CP) analysis of the second derivative spectra of the pseudodielectric constant in the above band gap region was accomplished. The analysis revealed the presence of five CPs with energies of 3.87, 4.16, 4.41, 4.67 and 5.34 eV.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Optical Properties of Gas Crystals: Combined Study of Temperature-Dependent Band Gap Energy and Oscillator Parameters
    (Natl inst Science Communication-niscair, 2017) Isik, Mehmet; Tugay, Evrin; Gasanly, Nizami; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Optical parameters of gallium sulfide (GaS) layered single crystals have been found through temperature-dependent transmission and room temperature reflection experiments in the wavelength range of 400-1100 nm. Experimental data demonstrates the coexistence of both optical indirect and direct transitions and the shift of the absorption edges toward lower energies by increasing temperature in the range of 10-300 K. Band gap at zero temperature, average phonon energy and electron phonon coupling parameter for indirect and direct band gap energies have been obtained from the analyses of temperature dependences of band gap energies. At high temperatures kT>> (E-ph), rates of band gap energy change have been found as 0.56 and 0.67 me V/K for E-gi and E-gd, respectively. Furthermore, the dispersion of refractive index has been discussed in terms of the Wemple-DiDomenico single effective oscillator model. The refractive index dispersion parameters, namely oscillator and dispersion energies, oscillator strength and zero-frequency refractive index, have been found to be 4.48 eV, 24.8 eV, 6.99x10(13) m(-2) and 2.56, respectively. The results of the present work will provide an important contribution to the research areas related to the characterization and optoelectronic device fabrication using GaS layered crystals.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Revealing Photoluminescence and Nonlinear Optical Absorption Characteristics of Pbmo0.75w0.25< Single Crystal for Optical Limiting Applications
    (Iop Publishing Ltd, 2024) Dogan, Anil; Karatay, Ahmet; Isik, Mehmet; Yildiz, Elif Akhuseyin; Gasanly, Nizami; Elmali, Ayhan; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Nonlinear absorption properties of PbMo0.75W0.25O4 single crystal fabricated by the Czochralski method were studied. The band gap energy of the crystal was determined as 3.12 eV. Urbach energy which represents the defect states inside the band gap was found to be 0.106 eV. PbMo0.75W0.25O4 single crystal has a broad photoluminescence emission band between 376 and 700 nm, with the highest emission intensity occurring at 486 nm and the lowest intensity peak at 547 nm, depending on the defect states. Femtosecond transient absorption measurements reveal that the lifetime of localized defect states is found to be higher than the 4 ns pulse duration. Open aperture (OA) Z-scan results demonstrate that the PbMo0.75W0.25O4 single crystal exhibits nonlinear absorption (NA) that includes two-photon absorption (TPA) as the dominant mechanism at the 532 nm excitations corresponding to 2.32 eV energy. NA coefficient (beta(eff)) increased from 7.24 x 10(-10) m W-1 to 8.81 x 10(-10) m W-1 with increasing pump intensity. At higher intensities beta(eff) tends to decrease with intensity increase. This decrease is an indication that saturable absorption (SA) occurred along with the TPA, called saturation of TPA. The lifetime of the defect states was measured by femtosecond transient absorption spectroscopy. Saturable absorption behavior was observed due to the long lifetime of the localized defect states. Closed aperture (CA) Z-scan trace shows the sign of a nonlinear refractive index. The optical limiting threshold of PbMo0.75W0.25O4 single crystal at the lowest intensity was determined as 3.45 mJ/cm(2). Results show that the PbMo0.75W0.25O4 single crystal can be a suitable semiconductor material for optical limiting applications in the visible region.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 21
    Citation - Scopus: 21
    The Role of Defects on the Transition From Saturable Absorption To Nonlinear Absorption of Bi12geo20< Single Crystal Under Increasing Laser Excitation
    (Elsevier, 2022) Pepe, Yasemin; Isik, Mehmet; Karatay, Ahmet; Yildiz, Elif Akhuseyin; Gasanly, Nizami; Elmali, Ayhan; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    This work reports defect and input intensity dependent nonlinear optical behaviors of Bi12GeO20 (BGO) single crystal. Open aperture (OA) Z-scan experiments were performed with 532 nm excitation wavelength under 4 ns and 100 fs pulsed laser irradiation. Obtained data were fitted with a theoretical model considering one-photon, two-photon and free carrier absorption contributions to nonlinear absorption due to longer lifetime of localized defect states than that of used laser pulse durations. At low input intensities, the BGO single crystal showed saturable absorption (SA) behavior and transition to nonlinear absorption (NA) behavior observed with further increase of the input intensities both of pulse durations. At low input intensity, the OPA mechanism is dominant and results in SA by filling of the defect states due to defect state at around one photon energy (2.32 eV). At higher input intensity, multi-photon, two-photon and free carrier absorption become dominant mechanisms, and nonlinear absorption behavior was observed. The lowest saturation threshold was found as 1.36 x 1010 W/cm2 with nanosecond pulses. We have revealed the mechanisms contributing both SA and NA, and determined saturation intensity threshold and effective nonlinear absorption coefficients. Our findings indicate that the tails of defect states overlap in the energy band gaps especially in sufficiently disordered crystal. With this way, the spectral range for saturable absorption and nonlinear absorption can be broadened.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 22
    Citation - Scopus: 22
    Structural, Morphological and Temperature-Tuned Bandgap Characteristics of Cus Nano-Flake Thin Films
    (Elsevier, 2022) Isik, Mehmet; Terlemezoglu, Makbule; Gasanly, Nizami; Parlak, Mehmet; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Copper sulfide (CuS) thin films were produced by radio-frequency (RF) magnetron sputtering method. Structural, morphological and optical characteristics of deposited CuS films were presented. X-ray diffraction pattern showed two intensive peaks associated with hexagonal crystalline structure. Scanning electron microscopy image indicated that CuS films have nano-flake structured. Raman spectrum was reported to show vibrational characteristics of the CuS nano-flake thin films. Two peaks associated with Cu-S and S-S vibrations were observed in the Raman spectrum. Transmission spectra were recorded at various temperatures between 10 and 300 K. The analyses accomplished considering Tauc expression demonstrated that direct bandgap energy decreases from 2.36 eV (at 10 K) to 2.22 eV (at 300 K). Temperature-bandgap dependency was analyzed considering Varshni and Bose-Einstein expressions to reveal bandgap at 0 K, rate of change of bandgap and Debye temperature. CuS nanoflake thin film may be used in optoelectronic and photocatalysis applications thanks to its direct and narrow bandgap energy characteristics.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Temperature-Dependent Optical Properties of Tio2 Nanoparticles: a Study of Band Gap Evolution
    (Springer, 2023) Isik, Mehmet; Delice, Serdar; Gasanly, Nizami; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    In this study, we present the first comprehensive investigation of the temperature-dependent band gap energy of anatase TiO2 nanoparticles, utilizing transmission measurements in the range of 10-300 K. X-ray diffraction pattern exhibited nine peaks related to tetragonal crystal structure. Scanning electron microscope image showed that the nanoparticles with the dimensions of 25-50 nm were found as micrometer sized agglomerated. When the spectrum obtained as a result of the transmission measurements was analyzed, it was seen that the band gap energy decreased from 3.29(5) to 3.26(6) eV as the temperature was increased from 10 to 300 K. Temperature-band gap dependence was analyzed using Varshni and O'Donnell-Chen optical models and optical parameters of the TiO2 nanoparticles like absolute zero band gap energy, rate of change of band gap with temperature and average phonon energy were reported.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Temperature-Tuned Band Gap Energy and Oscillator Parameters of Gas0.5se0.5< Single Crystals
    (Elsevier Gmbh, Urban & Fischer verlag, 2016) Isik, Mehmet; Tugay, Evrin; Gasanly, Nizami; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Temperature-dependent transmission and room temperature reflection measurements were carried out on GaS0.5Se0.5 single crystal in the wavelength range of 380-1000 nm to investigate its optical parameters. The analysis of the temperature-dependent absorption data showed that direct and indirect band gap energies increase from 2.36 to 2.50 eV and 2.27 to 2.40 eV, respectively, as temperature is decreased from 300 to 10 K. The rates of change of the direct and indirect band gap energies with temperature was found around -7.4 x 10(-4) eV/K from the analysis of experimental data under the light of theoretical relation giving the band gap energy as a function of temperature. The absolute zero value of the band gap energies were also found from the same analysis as 2.50 eV (for direct) and 2.40 eV (for indirect). Wemple-DiDomenico single effective oscillator model, Sellmeier oscillator model and Spitzer-Fan model were used for the room temperature reflection data to find optical parameters of the crystal. (C) 2016 Elsevier GmbH. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 6
    Citation - Scopus: 5
    Tunable Nonlinear Absorption and Optical Limiting Behavior of Nabi(moxw1-x< Single Crystals With Ratio of Molybdenum/Tungsten
    (Iop Publishing Ltd, 2023) Pepe, Yasemin; Yildiz, Elif Akhuseyin; Isik, Mehmet; Karatay, Ahmet; Gasanly, Nizami; Elmali, Ayhan; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    The compositional effect of Mo/W ratio on linear, nonlinear absorption and optical limiting behavior of the NaBi(MoxW1-xO4)(2) single crystals grown by Czochralski technique was investigated. X-ray diffraction patterns of the studied crystals presented well-defined peaks associated with the tetragonal crystalline structure. The nonlinear absorption performance and optical limiting threshold were determined using an open-aperture Z-scan technique. A theoretical model including one photon absorption (OPA), two photon absorption (TPA) and free carrier absorption was used to determine the nonlinear absorption parameters. All of the results showed that defect states, which strongly affect nonlinear absorption (NA) and optical limiting behaviors, can be tuned with the Mo/W ratio, enabling NaBi(MoxW1-xO4)(2) single crystals to be used in desired optoelectronic applications. Linear optical absorption analysis revealed that bandgap energy and defect states can be tuned by changing the Mo/W ratio in the crystal structure. The obtained results showed that all the studied crystals had NA behavior and the nonlinear absorption coefficient decreased with increasing Mo/W ratio. Sequential TPA is the main NA mechanism for these crystals due to the fact that the incident light energy is lower than the bandgap energies and the existence of the real intermediate state around 2.32 eV.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 21
    Citation - Scopus: 21
    Wavelength Dependence of the Nonlinear Absorption Performance and Optical Limiting in Bi12tio20 Single Crystal
    (Elsevier, 2023) Pepe, Yasemin; Isik, Mehmet; Karatay, Ahmet; Gasanly, Nizami; Elmali, Ayhan; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    In this study, the influence of excitation wavelength and input intensity on the nonlinear absorption (NA) mechanism and optical limiting behavior of the Bi12TiO20 (BTO) single crystal were reported. The energy band gap of the BTO single crystal was obtained to be 2.38 eV. Urbach energy revealed that the single crystal has a highly defective structure. Open aperture (OA) Z-scan experiments were conducted at 532 and 1064 nm exci-tation wavelengths at various input intensities. Obtained experimental data were analyzed with a theoretical model considering one photon, two-photon and free carrier absorption contributions to NA. The obtained results revealed that the BTO single crystal possesses NA. The NA coefficient increased with increasing input intensity at 532 nm excitation wavelength, while it decreased with increasing input intensity at 1064 nm excitation wave-length. Due to the intense localized defect states distribution at the energy of 532 nm excitation wavelength within the band gap, increasing contribution to NA came from one photon absorption (OPA), sequential two -photon absorption (TPA) and free carrier absorption (FCA) with increasing input intensity. The filling of the defect states at 1064 excitation wavelength caused a reduction in NA due to increasing saturable absorption with increasing input intensity. TPA coefficients were also found from the fitting ignoring the defect states. As ex-pected, the values of the nonlinear absorption coefficient beta eff are higher than that of the TPA coefficients for both excitation wavelengths. The optical limiting threshold of the BTO single crystal was obtained to be 6.62 mJ/cm2. The results of the present works indicated that BTO single crystal can be used as a potential optical limiter.