Using Artificial Intelligence Methods to Predict Student Academic Achievement

dc.authorscopusid57351974700
dc.authorscopusid57213371849
dc.contributor.authorEryılmaz, Meltem
dc.contributor.authorEryilmaz, Meltem
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:16:21Z
dc.date.available2024-07-05T15:16:21Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Al-Khafaji, Mustafa; Eryilmaz, Meltem] Atilim Univ, Comp Engn Dept, Ankara, Turkeyen_US
dc.description.abstractThis study applies two artificial intelligence methods represented by both the neural network and fuzzy logic to predict student achievement in the exam. The dataset used in this study was taken from an Iraqi engineering college and it represents data of 200 students who have enrolled in the computer science course. Gender, age, resources downloaded, videos viewed, discussion chat joined, exam scores used as the data set. The type of artificial neural network used was pattern neural network. Levenberg-Marquardt's algorithm was used to train the neural networks. On the other hand Sugeno fuzzy inference system was used for the fuzzy logic. The study results showed that the students who spend more time on the learning system have the most success rate. According to the results the neural network accuracy rate 73% and the fuzzy was 88%. This high accuracy rates support that artificial intelligence methods can be used to predict student academic achievement.en_US
dc.identifier.citation0
dc.identifier.doi10.1007/978-3-030-89880-9_31
dc.identifier.endpage414en_US
dc.identifier.isbn9783030898809
dc.identifier.isbn9783030898793
dc.identifier.issn2367-3370
dc.identifier.issn2367-3389
dc.identifier.scopus2-s2.0-85119860706
dc.identifier.scopusqualityQ4
dc.identifier.startpage403en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-89880-9_31
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1630
dc.identifier.volume359en_US
dc.identifier.wosWOS:000793730500031
dc.language.isoenen_US
dc.publisherSpringer international Publishing Agen_US
dc.relation.ispartof6th Future Technologies Conference (FTC) -- OCT 28-29, 2021 -- ELECTR NETWORKen_US
dc.relation.ispartofseriesLecture Notes in Networks and Systems
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectArtificial neural networken_US
dc.subjectFuzzy logicen_US
dc.subjecte-Learningen_US
dc.titleUsing Artificial Intelligence Methods to Predict Student Academic Achievementen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationec6c4c06-14dd-4654-b3a6-04e89c8d3baf
relation.isAuthorOfPublication.latestForDiscoveryec6c4c06-14dd-4654-b3a6-04e89c8d3baf
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections