Method Proposal for Distinction of Microscope Objectives on Hemocytometer Images;

dc.authorscopusid 43261651300
dc.authorscopusid 57190741107
dc.authorscopusid 8402817900
dc.contributor.author Ozkan,A.
dc.contributor.author Isgor,S.B.
dc.contributor.author Sengul,G.
dc.contributor.other Department of Electrical & Electronics Engineering
dc.contributor.other Chemical Engineering
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:44:35Z
dc.date.available 2024-07-05T15:44:35Z
dc.date.issued 2016
dc.department Atılım University en_US
dc.department-temp Ozkan A., Elektrik Ve Elektronik Mühendisligi Bölümü, Atilim Üniversitesi, Ankara, Turkey; Isgor S.B., Kimya Mühendisligi Ve Uygulamali Kimya Bölümü, Atilim Üniversitesi, Ankara, Turkey; Sengul G., Bilgisayar Mühendisligi Bölüm, Atilim Üniversitesi, Ankara, Turkey en_US
dc.description.abstract Hemocytometer is a special glass plate apparatus used for cell counting that has straight lines (counting chamber) in certain size. Leveraging this special lam and microscope, a cell concentration on an available cell suspension can be estimated. The automation process of hemocytometer images will assist several research disciplines to improve consistency of results and to reduce human labor. Different objective measurements can be utilized to analyze a cell sample on microscope. These differences affect the detail of image content. Basically, while the objective value is getting increased, image scale and detail level taken from image will increase, yet visible area becomes narrower. Due to this variation, different self-cell counting approaches should be developed for images taken with different objective values. In this paper, using the hemocytometer images gathered from a microscope, a novel approach is introduced for which can estimate objective values of a microscope with machine learning methods automatically. For this purpose, a frequency-based visual feature is proposed which embraces hemocytometer structure well. As a result of the conducted tests, %100 distinction accuracy is achieved with the proposed method. © 2016 IEEE. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1109/SIU.2016.7495987
dc.identifier.endpage 1308 en_US
dc.identifier.isbn 978-150901679-2
dc.identifier.scopus 2-s2.0-84982786524
dc.identifier.startpage 1305 en_US
dc.identifier.uri https://doi.org/10.1109/SIU.2016.7495987
dc.identifier.uri https://hdl.handle.net/20.500.14411/3792
dc.institutionauthor Özkan, Akın
dc.institutionauthor İşgör, Sultan Belgin
dc.institutionauthor Şengül, Gökhan
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings -- 24th Signal Processing and Communication Application Conference, SIU 2016 -- 16 May 2016 through 19 May 2016 -- Zonguldak -- 122605 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Hemocytometer en_US
dc.subject Microscope Objective Distinction en_US
dc.subject Visual Feature Extraction en_US
dc.title Method Proposal for Distinction of Microscope Objectives on Hemocytometer Images; en_US
dc.title.alternative Hemositometre Görüntüleri Üzerinde Mikroskop Objektif Ayrimi için Yöntem Önerisi en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication f399fa5d-a26e-401f-84b2-4e77e16bc0a7
relation.isAuthorOfPublication 8b4f43cd-ab34-4c90-b940-b1cddf5df5ad
relation.isAuthorOfPublication f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication.latestForDiscovery f399fa5d-a26e-401f-84b2-4e77e16bc0a7
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication bebae599-17cc-4f0b-997b-a4164a19b94b
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections