Hand Gesture Classification Using Inertial Based Sensors Via a Neural Network
| dc.contributor.author | Akan, Erhan | |
| dc.contributor.author | Tora, Hakan | |
| dc.contributor.author | Uslu, Baran | |
| dc.contributor.other | Airframe and Powerplant Maintenance | |
| dc.contributor.other | Department of Electrical & Electronics Engineering | |
| dc.contributor.other | 15. Graduate School of Natural and Applied Sciences | |
| dc.contributor.other | 13. School of Civil Aviation (4-Year) | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-10-06T11:12:08Z | |
| dc.date.available | 2024-10-06T11:12:08Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | In this study, a mobile phone equipped with four types of sensors namely, accelerometer, gyroscope, magnetometer and orientation, is used for gesture classification. Without feature selection, the raw data from the sensor outputs are processed and fed into a Multi-Layer Perceptron classifier for recognition. The user independent, single user dependent and multiple user dependent cases are all examined. Accuracy values of 91.66% for single user dependent case, 87.48% for multiple user dependent case and 60% for the user independent case are obtained. In addition, performance of each sensor is assessed separately and the highest performance is achieved with the orientation sensor. | en_US |
| dc.identifier.isbn | 9781538619117 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/9114 | |
| dc.language.iso | en | en_US |
| dc.publisher | Ieee | en_US |
| dc.relation.ispartof | 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS) -- DEC 05-08, 2017 -- Batumi, GEORGIA | en_US |
| dc.relation.ispartofseries | IEEE International Conference on Electronics Circuits and Systems | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | gesture recognition | en_US |
| dc.subject | neural network | en_US |
| dc.subject | accelerometer | en_US |
| dc.subject | magnetometer | en_US |
| dc.subject | gyroscope | en_US |
| dc.subject | orientation sensor | en_US |
| dc.title | Hand Gesture Classification Using Inertial Based Sensors Via a Neural Network | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Akan, Erhan | |
| gdc.author.institutional | Tora, Hakan | |
| gdc.author.wosid | Uslu, Baran/AAR-1071-2020 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Akan, Erhan; Uslu, Baran] Atilim Univ, Elect & Elect Engn, Ankara, Turkey; [Tora, Hakan] Atilim Univ, Avion Elect & Elect Engn, Ankara, Turkey | en_US |
| gdc.description.endpage | 143 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 140 | en_US |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.identifier.wos | WOS:000426974200033 | |
| gdc.wos.citedcount | 7 | |
| relation.isAuthorOfPublication | 6206b957-7a99-4d81-be17-52b7cc69c3c4 | |
| relation.isAuthorOfPublication | 3b369df4-6f40-4e7f-9021-94de8b562a0d | |
| relation.isAuthorOfPublication.latestForDiscovery | 6206b957-7a99-4d81-be17-52b7cc69c3c4 | |
| relation.isOrgUnitOfPublication | 0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5 | |
| relation.isOrgUnitOfPublication | c3c9b34a-b165-4cd6-8959-dc25e91e206b | |
| relation.isOrgUnitOfPublication | dff2e5a6-d02d-4bef-8b9e-efebe3919b10 | |
| relation.isOrgUnitOfPublication | e28bb977-cadc-4429-b547-973b099c3ce8 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5 |