An Empirical Study About Search-Based Refactoring Using Alternative Multiple and Population-Based Search Techniques

dc.authoridKilic, Hurevren/0000-0002-9058-0365
dc.authoridKILIC, HUREVREN/0000-0003-2647-8451
dc.authorwosidKilic, Hurevren/V-4236-2019
dc.contributor.authorKoc, Ekin
dc.contributor.authorErsoy, Nur
dc.contributor.authorAndac, Ali
dc.contributor.authorCamlidere, Zelal Seda
dc.contributor.authorCereci, Ibrahim
dc.contributor.authorKilic, Hurevren
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:10:17Z
dc.date.available2024-07-05T15:10:17Z
dc.date.issued2012
dc.departmentAtılım Universityen_US
dc.department-temp[Koc, Ekin; Ersoy, Nur; Andac, Ali; Camlidere, Zelal Seda; Cereci, Ibrahim; Kilic, Hurevren] Atilim Univ, Dept Comp Engn, Ankara, Turkeyen_US
dc.descriptionKilic, Hurevren/0000-0002-9058-0365; KILIC, HUREVREN/0000-0003-2647-8451en_US
dc.description.abstractAutomated maintenance of object-oriented software system designs via refactoring is a performance demanding combinatorial optimization problem. In this study, we made an empirical comparative study to see the performances of alternative search algorithms under. a quality model defined by an aggregated software fitness metric. We handled 20 different refactoring actions that realize searches on design landscape defined by combination of 24 object-oriented software metrics. The investigated algorithms include random, steepest descent, multiple first descent, multiple steepest descent, simulated annealing and artificial bee colony searches. The study is realized by using a tool called A-CMA developed in Java that accepts bytecode compiled Java codes as its input. The empiricial study showed that multiple steepest descent and population-based artificial bee colony algorithms are two most suitable approaches for the efficient solution of the search based refactoring problem.en_US
dc.description.sponsorshipAtilim University ARGEDA departmenten_US
dc.description.sponsorshipThe authors would like to thank Atilim University ARGEDA department for its financial support.en_US
dc.identifier.citation15
dc.identifier.doi10.1007/978-1-4471-2155-8_7
dc.identifier.endpage+en_US
dc.identifier.isbn9781447121541
dc.identifier.startpage59en_US
dc.identifier.urihttps://doi.org/10.1007/978-1-4471-2155-8_7
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1301
dc.identifier.wosWOS:000398249500007
dc.institutionauthorKılıç, Hürevren
dc.institutionauthorCereci, İbrahim
dc.language.isoenen_US
dc.publisherSpringer-verlag London Ltden_US
dc.relation.ispartof26th Annual International Symposium on Computer and Information Science -- SEP 26-28, 2011 -- Royal Soc London, London, ENGLANDen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSearch-based software engineeringen_US
dc.subjectCombinatorial optimizationen_US
dc.subjectAutomated refactoringen_US
dc.subjectSoftware maintenanceen_US
dc.subjectSoftware metricsen_US
dc.titleAn Empirical Study About Search-Based Refactoring Using Alternative Multiple and Population-Based Search Techniquesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isAuthorOfPublication26c615ae-248b-4103-b8f9-2afcacddaff0
relation.isAuthorOfPublication.latestForDiscovery27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections