An Empirical Study About Search-Based Refactoring Using Alternative Multiple and Population-Based Search Techniques

dc.authorid Kilic, Hurevren/0000-0002-9058-0365
dc.authorid KILIC, HUREVREN/0000-0003-2647-8451
dc.authorwosid Kilic, Hurevren/V-4236-2019
dc.contributor.author Koc, Ekin
dc.contributor.author Ersoy, Nur
dc.contributor.author Andac, Ali
dc.contributor.author Camlidere, Zelal Seda
dc.contributor.author Cereci, Ibrahim
dc.contributor.author Kilic, Hurevren
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:10:17Z
dc.date.available 2024-07-05T15:10:17Z
dc.date.issued 2012
dc.department Atılım University en_US
dc.department-temp [Koc, Ekin; Ersoy, Nur; Andac, Ali; Camlidere, Zelal Seda; Cereci, Ibrahim; Kilic, Hurevren] Atilim Univ, Dept Comp Engn, Ankara, Turkey en_US
dc.description Kilic, Hurevren/0000-0002-9058-0365; KILIC, HUREVREN/0000-0003-2647-8451 en_US
dc.description.abstract Automated maintenance of object-oriented software system designs via refactoring is a performance demanding combinatorial optimization problem. In this study, we made an empirical comparative study to see the performances of alternative search algorithms under. a quality model defined by an aggregated software fitness metric. We handled 20 different refactoring actions that realize searches on design landscape defined by combination of 24 object-oriented software metrics. The investigated algorithms include random, steepest descent, multiple first descent, multiple steepest descent, simulated annealing and artificial bee colony searches. The study is realized by using a tool called A-CMA developed in Java that accepts bytecode compiled Java codes as its input. The empiricial study showed that multiple steepest descent and population-based artificial bee colony algorithms are two most suitable approaches for the efficient solution of the search based refactoring problem. en_US
dc.description.sponsorship Atilim University ARGEDA department en_US
dc.description.sponsorship The authors would like to thank Atilim University ARGEDA department for its financial support. en_US
dc.identifier.citationcount 15
dc.identifier.doi 10.1007/978-1-4471-2155-8_7
dc.identifier.endpage + en_US
dc.identifier.isbn 9781447121541
dc.identifier.startpage 59 en_US
dc.identifier.uri https://doi.org/10.1007/978-1-4471-2155-8_7
dc.identifier.uri https://hdl.handle.net/20.500.14411/1301
dc.identifier.wos WOS:000398249500007
dc.institutionauthor Kılıç, Hürevren
dc.institutionauthor Cereci, İbrahim
dc.language.iso en en_US
dc.publisher Springer-verlag London Ltd en_US
dc.relation.ispartof 26th Annual International Symposium on Computer and Information Science -- SEP 26-28, 2011 -- Royal Soc London, London, ENGLAND en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Search-based software engineering en_US
dc.subject Combinatorial optimization en_US
dc.subject Automated refactoring en_US
dc.subject Software maintenance en_US
dc.subject Software metrics en_US
dc.title An Empirical Study About Search-Based Refactoring Using Alternative Multiple and Population-Based Search Techniques en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 17
dspace.entity.type Publication
relation.isAuthorOfPublication 27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isAuthorOfPublication 26c615ae-248b-4103-b8f9-2afcacddaff0
relation.isAuthorOfPublication.latestForDiscovery 27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections