4-Stage Target Detection Approach in Hyperspectral Images

dc.authorscopusid43261695100
dc.authorscopusid57198263797
dc.authorscopusid57188727928
dc.authorscopusid57188559201
dc.authorscopusid57190744256
dc.contributor.authorOzdil,O.
dc.contributor.authorGunes,A.
dc.contributor.authorEsin,Y.E.
dc.contributor.authorOzturk,S.
dc.contributor.authorDemirel,B.
dc.contributor.otherDepartment of Mechatronics Engineering
dc.date.accessioned2024-07-05T15:45:14Z
dc.date.available2024-07-05T15:45:14Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-tempOzdil O., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkey; Gunes A., Mechatronics Engineering, Faculty of Engineering, Atilim University, Ankara, Turkey; Esin Y.E., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkey; Ozturk S., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkey; Demirel B., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkeyen_US
dc.description.abstractPractical target detection systems require an automatic way to detect targets with high accuracy. Detection errors is not tolerable and they should be reduced as much as possible. In classical detection systems, generally single target detection algorithm is performed and the result will be evaluated according to the thresholding techniques. However, in these uncontrolled systems, false alarm rate strongly depends on the thresholding technique success. It is very hard to find a general and constant threshold value for images taken at different conditions and practical detection systems needs reliable threshold value. In this paper, we propose a new multi-stage target detection system which is the combination of different detection algorithms and thresholding technique. This system compose of 4-stages, i.e. namely 1-initial target detection (ACE, GLRT), 2-adaptive Constant False Alarm Rate (CFAR) thresholding, 3-spatially grouping, 4-statistical confidence operation. This system configuration removes the need for interactive user and it automatically implements confirmation and rejection steps. Moreover, this system can be used both for pure pixel and subpixel target detection purposes and it reduces computational processing time considerably with the implementation of consequtive processing stages. © 2018 IEEE.en_US
dc.identifier.citation2
dc.identifier.doi10.1109/WHISPERS.2018.8747230
dc.identifier.isbn978-172811581-8
dc.identifier.issn2158-6276
dc.identifier.scopus2-s2.0-85073895786
dc.identifier.urihttps://doi.org/10.1109/WHISPERS.2018.8747230
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3881
dc.identifier.volume2018-Septemberen_US
dc.institutionauthorGüneş, Ahmet
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.relation.ispartofWorkshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing -- 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2018 -- 23 September 2018 through 26 September 2018 -- Amsterdam -- 149100en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCFAR thresholdingen_US
dc.subjectfalse alarm mitigationen_US
dc.subjectHyperspectral image processingen_US
dc.subjectHyperspectral target detectionen_US
dc.title4-Stage Target Detection Approach in Hyperspectral Imagesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication.latestForDiscovery86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isOrgUnitOfPublicatione2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscoverye2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections