4-Stage Target Detection Approach in Hyperspectral Images

dc.authorscopusid 43261695100
dc.authorscopusid 57198263797
dc.authorscopusid 57188727928
dc.authorscopusid 57188559201
dc.authorscopusid 57190744256
dc.contributor.author Ozdil,O.
dc.contributor.author Gunes,A.
dc.contributor.author Esin,Y.E.
dc.contributor.author Ozturk,S.
dc.contributor.author Demirel,B.
dc.contributor.other Department of Mechatronics Engineering
dc.date.accessioned 2024-07-05T15:45:14Z
dc.date.available 2024-07-05T15:45:14Z
dc.date.issued 2018
dc.department Atılım University en_US
dc.department-temp Ozdil O., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkey; Gunes A., Mechatronics Engineering, Faculty of Engineering, Atilim University, Ankara, Turkey; Esin Y.E., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkey; Ozturk S., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkey; Demirel B., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkey en_US
dc.description.abstract Practical target detection systems require an automatic way to detect targets with high accuracy. Detection errors is not tolerable and they should be reduced as much as possible. In classical detection systems, generally single target detection algorithm is performed and the result will be evaluated according to the thresholding techniques. However, in these uncontrolled systems, false alarm rate strongly depends on the thresholding technique success. It is very hard to find a general and constant threshold value for images taken at different conditions and practical detection systems needs reliable threshold value. In this paper, we propose a new multi-stage target detection system which is the combination of different detection algorithms and thresholding technique. This system compose of 4-stages, i.e. namely 1-initial target detection (ACE, GLRT), 2-adaptive Constant False Alarm Rate (CFAR) thresholding, 3-spatially grouping, 4-statistical confidence operation. This system configuration removes the need for interactive user and it automatically implements confirmation and rejection steps. Moreover, this system can be used both for pure pixel and subpixel target detection purposes and it reduces computational processing time considerably with the implementation of consequtive processing stages. © 2018 IEEE. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1109/WHISPERS.2018.8747230
dc.identifier.isbn 978-172811581-8
dc.identifier.issn 2158-6276
dc.identifier.scopus 2-s2.0-85073895786
dc.identifier.uri https://doi.org/10.1109/WHISPERS.2018.8747230
dc.identifier.uri https://hdl.handle.net/20.500.14411/3881
dc.identifier.volume 2018-September en_US
dc.institutionauthor Güneş, Ahmet
dc.language.iso en en_US
dc.publisher IEEE Computer Society en_US
dc.relation.ispartof Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing -- 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2018 -- 23 September 2018 through 26 September 2018 -- Amsterdam -- 149100 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject CFAR thresholding en_US
dc.subject false alarm mitigation en_US
dc.subject Hyperspectral image processing en_US
dc.subject Hyperspectral target detection en_US
dc.title 4-Stage Target Detection Approach in Hyperspectral Images en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication.latestForDiscovery 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscovery e2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections