4-Stage Target Detection Approach in Hyperspectral Images

dc.contributor.author Ozdil,O.
dc.contributor.author Gunes,A.
dc.contributor.author Esin,Y.E.
dc.contributor.author Ozturk,S.
dc.contributor.author Demirel,B.
dc.date.accessioned 2024-07-05T15:45:14Z
dc.date.available 2024-07-05T15:45:14Z
dc.date.issued 2018
dc.description.abstract Practical target detection systems require an automatic way to detect targets with high accuracy. Detection errors is not tolerable and they should be reduced as much as possible. In classical detection systems, generally single target detection algorithm is performed and the result will be evaluated according to the thresholding techniques. However, in these uncontrolled systems, false alarm rate strongly depends on the thresholding technique success. It is very hard to find a general and constant threshold value for images taken at different conditions and practical detection systems needs reliable threshold value. In this paper, we propose a new multi-stage target detection system which is the combination of different detection algorithms and thresholding technique. This system compose of 4-stages, i.e. namely 1-initial target detection (ACE, GLRT), 2-adaptive Constant False Alarm Rate (CFAR) thresholding, 3-spatially grouping, 4-statistical confidence operation. This system configuration removes the need for interactive user and it automatically implements confirmation and rejection steps. Moreover, this system can be used both for pure pixel and subpixel target detection purposes and it reduces computational processing time considerably with the implementation of consequtive processing stages. © 2018 IEEE. en_US
dc.identifier.doi 10.1109/WHISPERS.2018.8747230
dc.identifier.isbn 978-172811581-8
dc.identifier.issn 2158-6276
dc.identifier.scopus 2-s2.0-85073895786
dc.identifier.uri https://doi.org/10.1109/WHISPERS.2018.8747230
dc.identifier.uri https://hdl.handle.net/20.500.14411/3881
dc.language.iso en en_US
dc.publisher IEEE Computer Society en_US
dc.relation.ispartof Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing -- 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2018 -- 23 September 2018 through 26 September 2018 -- Amsterdam -- 149100 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject CFAR thresholding en_US
dc.subject false alarm mitigation en_US
dc.subject Hyperspectral image processing en_US
dc.subject Hyperspectral target detection en_US
dc.title 4-Stage Target Detection Approach in Hyperspectral Images en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 43261695100
gdc.author.scopusid 57198263797
gdc.author.scopusid 57188727928
gdc.author.scopusid 57188559201
gdc.author.scopusid 57190744256
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Ozdil O., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkey; Gunes A., Mechatronics Engineering, Faculty of Engineering, Atilim University, Ankara, Turkey; Esin Y.E., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkey; Ozturk S., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkey; Demirel B., Sensors, Signal Ve Image Processing Group, HAVELSAN Inc, Ankara, Turkey en_US
gdc.description.endpage 5
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1
gdc.description.volume 2018-September en_US
gdc.identifier.openalex W2954246410
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5677438E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.168139E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.22050003
gdc.openalex.normalizedpercentile 0.63
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Güneş, Ahmet
relation.isAuthorOfPublication 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication.latestForDiscovery 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections