Two-Stage Feature Generator for Handwritten Digit Classification

dc.authoridTora, Hakan/0000-0002-0427-483X
dc.authoridButun, Ismail/0000-0002-1723-5741
dc.authoridoztoprak, kasim/0000-0003-2483-8070
dc.authorscopusid58671692200
dc.authorscopusid6506642154
dc.authorscopusid21743623400
dc.authorscopusid35316899700
dc.authorwosidButun, Ismail/K-1246-2015
dc.authorwosidoztoprak, kasim/U-1631-2018
dc.contributor.authorTora, Hakan
dc.contributor.authorTora, Hakan
dc.contributor.authorOztoprak, Kasim
dc.contributor.authorButun, Ismail
dc.contributor.otherAirframe and Powerplant Maintenance
dc.date.accessioned2024-07-05T15:21:46Z
dc.date.available2024-07-05T15:21:46Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Pirim, M. Altinay Gunler] Vakifbank, TR-06200 Ankara, Turkiye; [Tora, Hakan] Atilim Univ, Dept Avion, TR-06830 Ankara, Turkiye; [Oztoprak, Kasim] Konya Food & Agr Univ, Dept Comp Engn, TR-42080 Konya, Turkiye; [Butun, Ismail] KTH Royal Inst Technol, Dept Comp Engn, SE-11428 Stockholm, Sweden; [Butun, Ismail] OSTIM Tech Univ, Dept Comp Engn, TR-06370 Ankara, Turkiyeen_US
dc.descriptionTora, Hakan/0000-0002-0427-483X; Butun, Ismail/0000-0002-1723-5741; oztoprak, kasim/0000-0003-2483-8070en_US
dc.description.abstractIn this paper, a novel feature generator framework is proposed for handwritten digit classification. The proposed framework includes a two-stage cascaded feature generator. The first stage is based on principal component analysis (PCA), which generates projected data on principal components as features. The second one is constructed by a partially trained neural network (PTNN), which uses projected data as inputs and generates hidden layer outputs as features. The features obtained from the PCA and PTNN-based feature generator are tested on the MNIST and USPS datasets designed for handwritten digit sets. Minimum distance classifier (MDC) and support vector machine (SVM) methods are exploited as classifiers for the obtained features in association with this framework. The performance evaluation results show that the proposed framework outperforms the state-of-the-art techniques and achieves accuracies of 99.9815% and 99.9863% on the MNIST and USPS datasets, respectively. The results also show that the proposed framework achieves almost perfect accuracies, even with significantly small training data sizes.en_US
dc.description.sponsorshipKTH Royal Institute of Technologyen_US
dc.description.sponsorshipThis research was funded by KTH Royal Institute of Technology (via KTH Library's Open Access Policy).en_US
dc.identifier.citation0
dc.identifier.doi10.3390/s23208477
dc.identifier.issn1424-8220
dc.identifier.issue20en_US
dc.identifier.pmid37896570
dc.identifier.scopus2-s2.0-85175278954
dc.identifier.urihttps://doi.org/10.3390/s23208477
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2128
dc.identifier.volume23en_US
dc.identifier.wosWOS:001089765800001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectminimum distance classifieren_US
dc.subjectneural networken_US
dc.subjectprincipal component analysisen_US
dc.subjectsupport vector machineen_US
dc.subjectpattern recognitionen_US
dc.subjectsoft sensoren_US
dc.titleTwo-Stage Feature Generator for Handwritten Digit Classificationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isAuthorOfPublication.latestForDiscovery3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isOrgUnitOfPublication0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublication.latestForDiscovery0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5

Files

Collections