A Novel Framework Using Deep Auto-Encoders Based Linear Model for Data Classification

dc.authorid Tolun, Mehmet Resit/0000-0002-8478-7220
dc.authorid Tolun, Mehmet Resit/0000-0002-8478-7220
dc.authorid Mishra, Alok/0000-0003-1275-2050
dc.authorid Karim, Ahmad M./0000-0003-4359-6628
dc.authorscopusid 57202709117
dc.authorscopusid 57222534716
dc.authorscopusid 36349844700
dc.authorscopusid 6603446979
dc.authorscopusid 7003959561
dc.authorscopusid 7201441575
dc.authorwosid Tolun, Mehmet Resit/KCJ-5958-2024
dc.authorwosid Tolun, Mehmet Resit/AAX-2456-2021
dc.authorwosid Karim, Ahmad/AFU-1727-2022
dc.authorwosid Güzel, Mehmet/AAI-7466-2020
dc.authorwosid Mishra, Alok/AAE-2673-2019
dc.contributor.author Karim, Ahmad M.
dc.contributor.author Kaya, Hilal
dc.contributor.author Guzel, Mehmet Serdar
dc.contributor.author Tolun, Mehmet R.
dc.contributor.author Celebi, Fatih V.
dc.contributor.author Mishra, Alok
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:39:03Z
dc.date.available 2024-07-05T15:39:03Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Karim, Ahmad M.; Kaya, Hilal; Celebi, Fatih V.] AYBU, Comp Engn Dept, TR-06830 Ankara, Turkey; [Guzel, Mehmet Serdar] Ankara Univ, Comp Engn Dept, TR-06830 Ankara, Turkey; [Tolun, Mehmet R.] Konya Food & Agr Univ, Comp Engn Dept, TR-42080 Konya, Turkey; [Mishra, Alok] Molde Univ Coll Specialized Univ Logist, Fac Logist, N-6402 Molde, Norway; [Mishra, Alok] Atilim Univ, Software Engn Dept, TR-06830 Ankara, Turkey en_US
dc.description Tolun, Mehmet Resit/0000-0002-8478-7220; Tolun, Mehmet Resit/0000-0002-8478-7220; Mishra, Alok/0000-0003-1275-2050; Karim, Ahmad M./0000-0003-4359-6628 en_US
dc.description.abstract This paper proposes a novel data classification framework, combining sparse auto-encoders (SAEs) and a post-processing system consisting of a linear system model relying on Particle Swarm Optimization (PSO) algorithm. All the sensitive and high-level features are extracted by using the first auto-encoder which is wired to the second auto-encoder, followed by a Softmax function layer to classify the extracted features obtained from the second layer. The two auto-encoders and the Softmax classifier are stacked in order to be trained in a supervised approach using the well-known backpropagation algorithm to enhance the performance of the neural network. Afterwards, the linear model transforms the calculated output of the deep stacked sparse auto-encoder to a value close to the anticipated output. This simple transformation increases the overall data classification performance of the stacked sparse auto-encoder architecture. The PSO algorithm allows the estimation of the parameters of the linear model in a metaheuristic policy. The proposed framework is validated by using three public datasets, which present promising results when compared with the current literature. Furthermore, the framework can be applied to any data classification problem by considering minor updates such as altering some parameters including input features, hidden neurons and output classes. en_US
dc.identifier.citationcount 11
dc.identifier.doi 10.3390/s20216378
dc.identifier.issn 1424-8220
dc.identifier.issue 21 en_US
dc.identifier.pmid 33182270
dc.identifier.scopus 2-s2.0-85096082849
dc.identifier.uri https://doi.org/10.3390/s20216378
dc.identifier.uri https://hdl.handle.net/20.500.14411/3159
dc.identifier.volume 20 en_US
dc.identifier.wos WOS:000593557500001
dc.identifier.wosquality Q2
dc.institutionauthor Mıshra, Alok
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 16
dc.subject deep sparse auto-encoders en_US
dc.subject medical diagnosis en_US
dc.subject linear model en_US
dc.subject data classification en_US
dc.subject PSO algorithm en_US
dc.title A Novel Framework Using Deep Auto-Encoders Based Linear Model for Data Classification en_US
dc.type Article en_US
dc.wos.citedbyCount 12
dspace.entity.type Publication
relation.isAuthorOfPublication de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscovery de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections