Neuron Modeling: Estimating the Parameters of a Neuron Model From Neural Spiking Data

dc.contributor.authorDoruk, Reşat Özgür
dc.contributor.otherElectrical-Electronics Engineering
dc.date.accessioned2024-10-06T11:32:19Z
dc.date.available2024-10-06T11:32:19Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-tempATILIM ÜNİVERSİTESİen_US
dc.description.abstractWe present a modeling study aiming at the estimation of the parameters of a single neuron model from neuralspiking data. The model receives a stimulus as input and provides the firing rate of the neuron as output. The neuralspiking data will be obtained from point process simulation. The resultant data will be used in parameter estimationbased on the inhomogeneous Poisson maximum likelihood method. The model will be stimulated by various forms ofstimuli, which are modeled by a Fourier series (FS), exponential functions, and radial basis functions (RBFs). Tabulatedresults presenting cases with different sample sizes (# of repeated trials), stimulus component sizes (FS and RBF),amplitudes, and frequency ranges (FS) will be presented to validate the approach and provide a means of comparison.The results showed that regardless of the stimulus type, the most effective parameter on the estimation performanceappears to be the sample size. In addition, the lowest variance of the estimates is obtained when a Fourier series stimulusis applied in the estimation.en_US
dc.identifier.citationcount1
dc.identifier.endpage2314en_US
dc.identifier.issn1300-0632
dc.identifier.issn1300-0632
dc.identifier.issue5en_US
dc.identifier.scopusqualityQ3
dc.identifier.startpage2301en_US
dc.identifier.trdizinid323629
dc.identifier.urihttps://search.trdizin.gov.tr/en/yayin/detay/323629/neuron-modeling-estimating-the-parameters-of-a-neuron-model-from-neural-spiking-data
dc.identifier.urihttps://hdl.handle.net/20.500.14411/9935
dc.identifier.volume26en_US
dc.identifier.wosqualityQ4
dc.institutionauthorDoruk, Reşat Özgür
dc.language.isoenen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMühendisliken_US
dc.subjectElektrik ve Elektroniken_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectYazılım Mühendisliğien_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectSibernitiken_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectBilgi Sistemlerien_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectDonanım ve Mimarien_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectTeori ve Metotlaren_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectYapay Zekaen_US
dc.titleNeuron Modeling: Estimating the Parameters of a Neuron Model From Neural Spiking Dataen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationbbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isAuthorOfPublication.latestForDiscoverybbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isOrgUnitOfPublication032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication.latestForDiscovery032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections