Energy and Exergy Performance Assessments of a High Temperature-Proton Exchange Membrane Fuel Cell Based Integrated Cogeneration System

Loading...
Publication Logo

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 1%
Influence
Top 10%
Popularity
Top 1%

Research Projects

Journal Issue

Abstract

High-temperature proton exchange membrane fuel cell (HT-PEMFC), which operates between 160 degrees C and 200 degrees C, is considered to be a promising technology, especially for cogeneration applications. In this study, a mathematical model of a natural gas fed integrated energy system based on HT-PEMFC is first developed using the principles of electrochemistry and thermodynamics (including energy and exergy analyses). The effects of some key operating parameters (e.g., steam-to-carbon ratio, HT-PEMFC operating temperature, and anode stoichiometric ratio) on the system performance (electrical, cogeneration, and exergetic efficiencies) are examined. The exergy destruction rates of each component in the integrated system are found for different values of these parameters. The results show that the most influential parameter which affects the performance of the integrated system is the anode stoichiometric ratio. For the baseline conditions, when the anode stoichiometric ratio increases from 1.2 to 2, the electrical, cogeneration, and exergetic efficiencies decrease by 42.04%, 33.15%, and 37.39%, respectively. The highest electrical power output of the system is obtained when the SCR, operating temperature, and anode stoichiometric ratio are taken as 2, 160 degrees C, and 1.2, respectively. For this case, the electrical, cogeneration, and exergetic efficiencies are found as 26.20%, 70.34%, and 26.74%, respectively. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Description

DEVRIM, YILSER/0000-0001-8430-0702; Colpan, Can Ozgur/0000-0003-0855-3147; Nalbant Atak, Yagmur/0000-0002-1708-5958

Keywords

High-temperature proton exchange membrane fuel cell, Modeling, Cogeneration, Energy, Exergy

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q1

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
56

Source

7th Global Conference on Global Warming (GCGW) -- JUN 24-28, 2018 -- Izmir, TURKEY

Volume

45

Issue

5

Start Page

3584

End Page

3594

Collections

PlumX Metrics
Citations

CrossRef : 7

Scopus : 62

Captures

Mendeley Readers : 48

SCOPUS™ Citations

62

checked on Feb 11, 2026

Web of Science™ Citations

58

checked on Feb 11, 2026

Page Views

5

checked on Feb 11, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
4.32639016

Sustainable Development Goals