Energy and exergy performance assessments of a high temperature-proton exchange membrane fuel cell based integrated cogeneration system

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

High-temperature proton exchange membrane fuel cell (HT-PEMFC), which operates between 160 degrees C and 200 degrees C, is considered to be a promising technology, especially for cogeneration applications. In this study, a mathematical model of a natural gas fed integrated energy system based on HT-PEMFC is first developed using the principles of electrochemistry and thermodynamics (including energy and exergy analyses). The effects of some key operating parameters (e.g., steam-to-carbon ratio, HT-PEMFC operating temperature, and anode stoichiometric ratio) on the system performance (electrical, cogeneration, and exergetic efficiencies) are examined. The exergy destruction rates of each component in the integrated system are found for different values of these parameters. The results show that the most influential parameter which affects the performance of the integrated system is the anode stoichiometric ratio. For the baseline conditions, when the anode stoichiometric ratio increases from 1.2 to 2, the electrical, cogeneration, and exergetic efficiencies decrease by 42.04%, 33.15%, and 37.39%, respectively. The highest electrical power output of the system is obtained when the SCR, operating temperature, and anode stoichiometric ratio are taken as 2, 160 degrees C, and 1.2, respectively. For this case, the electrical, cogeneration, and exergetic efficiencies are found as 26.20%, 70.34%, and 26.74%, respectively. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Description

DEVRIM, YILSER/0000-0001-8430-0702; Colpan, Can Ozgur/0000-0003-0855-3147; Nalbant Atak, Yagmur/0000-0002-1708-5958

Keywords

High-temperature proton exchange membrane fuel cell, Modeling, Cogeneration, Energy, Exergy

Turkish CoHE Thesis Center URL

Citation

47

WoS Q

Q1

Scopus Q

Source

7th Global Conference on Global Warming (GCGW) -- JUN 24-28, 2018 -- Izmir, TURKEY

Volume

45

Issue

5

Start Page

3584

End Page

3594

Collections