Lyapunov Type Inequalities for Second-Order Differential Equations With Mixed Nonlinearities

dc.contributor.author Agarwal,R.P.
dc.contributor.author Özbekler,A.
dc.date.accessioned 2024-07-05T15:44:41Z
dc.date.available 2024-07-05T15:44:41Z
dc.date.issued 2016
dc.description.abstract In this paper,we present some new Lyapunov and Hartman type inequalities for second-order equations with mixed nonlinearities: x''(t) + p(t)|x(t)|β?1x(t) + q(t)|x(t)|y?1x(t) = 0, where p(t), q(t) are real-valued functions and 0 < γ < 1 < β < 2. No sign restrictions are imposed on the potential functions p(t) and q(t). The inequalities obtained generalize the existing results for the special cases of this equation in the literature. © 2016 by De Gruyter. en_US
dc.identifier.doi 10.1515/anly-2015-0002
dc.identifier.issn 0174-4747
dc.identifier.issn 2196-6753
dc.identifier.scopus 2-s2.0-84995596331
dc.identifier.uri https://doi.org/10.1515/anly-2015-0002
dc.identifier.uri https://hdl.handle.net/20.500.14411/3811
dc.language.iso en en_US
dc.publisher Walter de Gruyter GmbH en_US
dc.relation.ispartof Analysis (Germany) en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Lyapunov type inequality en_US
dc.subject mixed nonlinear en_US
dc.subject sub-linear en_US
dc.subject super-linear en_US
dc.title Lyapunov Type Inequalities for Second-Order Differential Equations With Mixed Nonlinearities en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 36013313700
gdc.author.scopusid 9434099700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Agarwal R.P., Department of Mathematics, Texas A and M University-Kingsville, 700 University Blvd., Kingsville, 78363-8202, TX, United States; Özbekler A., Department of Mathematics, Texas A and M University-Kingsville, 700 University Blvd., Kingsville, 78363-8202, TX, United States, Department of Mathematics, Atilim University, Incek, Ankara, 06836, Turkey en_US
gdc.description.endpage 252 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 245 en_US
gdc.description.volume 36 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2533146127
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5604443E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Nonlinear boundary value problems for ordinary differential equations
gdc.oaire.keywords mixed nonlinear
gdc.oaire.keywords sub-linear
gdc.oaire.keywords super-linear
gdc.oaire.keywords Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
gdc.oaire.keywords Lyapunov type inequality
gdc.oaire.popularity 8.5977664E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 0.45616712
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 2
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Özbekler, Abdullah
relation.isAuthorOfPublication ae65c9f5-e938-41ab-b335-fed50015a138
relation.isAuthorOfPublication.latestForDiscovery ae65c9f5-e938-41ab-b335-fed50015a138
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections