On the Approximation of Solutions To a Fixed Point Problem With Inequality Constraints in a Banach Space Partially Ordered by a Cone
| dc.contributor.author | Jleli,M. | |
| dc.contributor.author | Karapinar,E. | |
| dc.contributor.author | Samet,B. | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:45:11Z | |
| dc.date.available | 2024-07-05T15:45:11Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | Let E be a Banach space with a cone P. Let T, ϕi: E → E (i = 1, 2) be three given operators. We address the following question: Find x ε E such that where ≤P is the partial order on E induced by the cone P, and 0E is the zero vector of E. We obtain sufficient conditions for the existence and uniqueness of solutions to this problem. We present an iterative algorithm to approximate the solution. The error estimates as well as results concerning the data dependence, well-posedness, limit shadowing property, and sequences of operators are provided. Some interesting consequences are deduced from our main results. © Springer Nature Singapore Pte Ltd. 2017. All rights reserved. | en_US |
| dc.identifier.doi | 10.1007/978-981-10-3722-1_12 | |
| dc.identifier.isbn | 978-981103722-1 | |
| dc.identifier.isbn | 978-981103721-4 | |
| dc.identifier.scopus | 2-s2.0-85033328620 | |
| dc.identifier.uri | https://doi.org/10.1007/978-981-10-3722-1_12 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/3860 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Singapore | en_US |
| dc.relation.ispartof | Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | [No Keyword Available] | en_US |
| dc.title | On the Approximation of Solutions To a Fixed Point Problem With Inequality Constraints in a Banach Space Partially Ordered by a Cone | en_US |
| dc.type | Book Part | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Karapınar, Erdal | |
| gdc.author.scopusid | 23012064600 | |
| gdc.author.scopusid | 16678995500 | |
| gdc.author.scopusid | 55884062400 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::book::book part | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | Jleli M., Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Karapinar E., Department of Mathematics, Atilim University, Incek, Ankara, 06836, Turkey, Nonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Samet B., Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia | en_US |
| gdc.description.endpage | 455 | en_US |
| gdc.description.publicationcategory | Kitap Bölümü - Uluslararası | en_US |
| gdc.description.startpage | 441 | en_US |
| gdc.identifier.openalex | W2609586142 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.6992308E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.7857084E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.fwci | 0.842 | |
| gdc.openalex.normalizedpercentile | 0.8 | |
| gdc.opencitations.count | 2 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| relation.isAuthorOfPublication | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
| relation.isAuthorOfPublication.latestForDiscovery | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |