Düşük kaliteli görüntüler için derin öğrenmeye dayalı araç sınıflandırması

dc.contributor.advisorDalveren, Yaser
dc.contributor.advisorPazar, Şenol
dc.contributor.authorTaş, Sümeyra
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-07T12:46:06Z
dc.date.available2024-07-07T12:46:06Z
dc.date.issued2022
dc.departmentFen Bilimleri Enstitüsü / Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
dc.description.abstractNüfusun artması ile birlikte ulaşımda kullanılan araç sayısı da artış göstermektedir. Araç sınıflandırması, otomatik ücret toplama sistemleri, trafik kontrol sistemleri, akıllı ulaşım sistemleri, otonom araçlar (ve daha fazlası) gibi değişik alanlarda bir ihtiyaçtır. Konvolüsyonel Sinir Ağı, derin öğrenmenin bir parçasıdır ve kısaca CNN olarak adlandırılır, görsel verilerle araç sınıflandırması için iyi bilinen, kullanılan bir modeldir. Ancak, düşük kaliteli görüntülere değinen çok fazla uygulama yoktur. Bu çalışma, CNN modellerinin 2 MP standart bir güvenlik kamerası kullanılarak bir araç sınıflandırma projesi için düşük kaliteli görüntülerle çalıştırılabileceğini ve kullanılabileceğini göstermektedir. Buna ek olarak, bu çalışma sıfırdan inşa edilmiş, özellik çıkarma için önceden eğitilmiş VGG16 ağı ve ince ayar için önceden eğitilmiş VGG16 ağı kullanan kendine ait az veri seti ile çalışarak üç CNN modeli sunmaktadır. Deneylerden elde edilen umut verici sonuçlar, düşük kaliteli görüntüler içeren bir veri seti kullanılsa bile araç sınıflandırmanın mümkün olabileceğini göstermektedir.
dc.description.abstractWith the increase in the population, the number of vehicles used in transportation is increasing. Vehicle classification is a need in various areas such as automatic toll collection systems, traffic control systems, intelligent transportation systems or autonomous vehicles and more. Convolutional Neural Network, is a part of deep learning and is called CNN in brief, is a well-known model for vehicle classification with visual data. However, there are not many applications that touch upon low quality images. This work presents that CNN models can be run and used with low quality images for a vehicle classification project by using a 2 MP standard security camera. In addition, this work presents three CNN models which are built from scratch, VGG16 pre-trained network for feature extraction, and VGG16 pre-trained network for fine-tuning by running its own less dataset. Promising results achieved from the experiments show that it is possible to classify vehicles even a dataset containing low quality images is used.en
dc.identifier.endpage65
dc.identifier.startpage0
dc.identifier.urihttps://hdl.handle.net/20.500.14411/4975
dc.identifier.yoktezid722078
dc.institutionauthorDalveren, Yaser
dc.language.isoen
dc.subjectElektrik ve Elektronik Mühendisliği
dc.subjectAraç sınıflandırma
dc.subjectElectrical and Electronics Engineeringen_US
dc.subjectEvrişimli sinir ağları
dc.subjectVehicle classificationen_US
dc.subjectConvolutional neural networksen_US
dc.subjectÖznitelik
dc.subjectFeature extractionen_US
dc.titleDüşük kaliteli görüntüler için derin öğrenmeye dayalı araç sınıflandırması
dc.titleDeep learning based vehicle classification for low quality imagesen_US
dc.typeMaster Thesis
dspace.entity.typePublication
relation.isAuthorOfPublication55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isAuthorOfPublication.latestForDiscovery55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
722078 Deep learning based vehicle classification for low quality images.pdf
Size:
2.47 MB
Format:
Adobe Portable Document Format