The Interaction of Halogen Atoms and Molecules With Borophene

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Soc Chemistry

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

The realization of buckled monolayer sheets of boron (i.e., borophene) and its other polymorphs has attracted significant interest in the field of two-dimensional systems. Motivated by borophene's tendency to donate electrons, we analyzed the interaction of single halogen atoms (F, Cl, Br, I) with borophene. The possible adsorption sites are tested and the top of the boron atom is found as the ground state configuration. The nature of bonding and strong chemical interaction is revealed by using projected density of states and charge difference analysis. The migration of single halogen atoms on the surface of borophene is analyzed and high diffusion barriers that decrease with atomic size are obtained. The metallicity of borophene is preserved upon adsorption but anisotropy in electrical conductivity is altered. The variation of adsorption and formation energy, interatomic distance, charge transfer, diffusion barriers, and bonding character with the type of halogen atom are explored and trends are revealed. Lastly, the adsorption of halogen molecules (F-2, Cl-2, Br-2, I-2), including the possibility of dissociation, is studied. The obtained results are not only substantial for fundamental understanding of halogenated derivatives of borophene, but also are useful for near future technological applications.

Description

Khanifaev, Jamoliddin/0000-0001-9020-6464; Konuk, Mine/0000-0001-6321-6501; Durgun, Engin/0000-0002-0639-5862

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q2

Source

Volume

19

Issue

42

Start Page

28963

End Page

28969

Collections