Experience in Predicting Fault-Prone Software Modules Using Complexity Metrics

dc.authoridMishra, Alok/0000-0003-1275-2050
dc.authorscopusid56160326900
dc.authorscopusid7201441575
dc.authorwosidMishra, Alok/AAE-2673-2019
dc.contributor.authorYu, Liguo
dc.contributor.authorMishra, Alok
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T14:28:21Z
dc.date.available2024-07-05T14:28:21Z
dc.date.issued2012
dc.departmentAtılım Universityen_US
dc.department-temp[Yu, Liguo] Indiana Univ S Bend, South Bend, IN 46634 USA; [Mishra, Alok] Atilim Univ, Dept Comp & Software Engn, Ankara, Turkeyen_US
dc.descriptionMishra, Alok/0000-0003-1275-2050en_US
dc.description.abstractComplexity metrics have been intensively studied in predicting fault-prone software modules. However, little work is done in studying how to effectively use the complexity metrics and the prediction models under realistic conditions. In this paper, we present a study showing how to utilize the prediction models generated from existing projects to improve the fault detection on other projects. The binary logistic regression method is used in studying publicly available data of five commercial products. Our study shows (1) models generated using more datasets can improve the prediction accuracy but not the recall rate; (2) lowering the cut-off value can improve the recall rate, but the number of false positives will be increased, which will result in higher maintenance effort. We further suggest that in order to improve model prediction efficiency, the selection of source datasets and the determination of cut-Off values should be based on specific properties of a project. So far, there are no general rules that have been found and reported to followen_US
dc.description.sponsorshipFaculty Research Grant of Indiana University South Benden_US
dc.description.sponsorshipThis study is partially supported by the Faculty Research Grant of Indiana University South Bend.en_US
dc.identifier.citation24
dc.identifier.doi10.1080/16843703.2012.11673302
dc.identifier.endpage433en_US
dc.identifier.issn1684-3703
dc.identifier.issn1811-4857
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-84874329946
dc.identifier.scopusqualityQ2
dc.identifier.startpage421en_US
dc.identifier.urihttps://doi.org/10.1080/16843703.2012.11673302
dc.identifier.urihttps://hdl.handle.net/20.500.14411/355
dc.identifier.volume9en_US
dc.identifier.wosWOS:000312110900007
dc.identifier.wosqualityQ1
dc.institutionauthorMıshra, Alok
dc.language.isoenen_US
dc.publisherNctu-national Chiao Tung Univ Pressen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBinary logistic regressionen_US
dc.subjectcomplexity metricsen_US
dc.subjectfault-prone software moduleen_US
dc.titleExperience in Predicting Fault-Prone Software Modules Using Complexity Metricsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationde97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscoveryde97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections