Experience in Predicting Fault-Prone Software Modules Using Complexity Metrics

dc.authorid Mishra, Alok/0000-0003-1275-2050
dc.authorscopusid 56160326900
dc.authorscopusid 7201441575
dc.authorwosid Mishra, Alok/AAE-2673-2019
dc.contributor.author Yu, Liguo
dc.contributor.author Mishra, Alok
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T14:28:21Z
dc.date.available 2024-07-05T14:28:21Z
dc.date.issued 2012
dc.department Atılım University en_US
dc.department-temp [Yu, Liguo] Indiana Univ S Bend, South Bend, IN 46634 USA; [Mishra, Alok] Atilim Univ, Dept Comp & Software Engn, Ankara, Turkey en_US
dc.description Mishra, Alok/0000-0003-1275-2050 en_US
dc.description.abstract Complexity metrics have been intensively studied in predicting fault-prone software modules. However, little work is done in studying how to effectively use the complexity metrics and the prediction models under realistic conditions. In this paper, we present a study showing how to utilize the prediction models generated from existing projects to improve the fault detection on other projects. The binary logistic regression method is used in studying publicly available data of five commercial products. Our study shows (1) models generated using more datasets can improve the prediction accuracy but not the recall rate; (2) lowering the cut-off value can improve the recall rate, but the number of false positives will be increased, which will result in higher maintenance effort. We further suggest that in order to improve model prediction efficiency, the selection of source datasets and the determination of cut-Off values should be based on specific properties of a project. So far, there are no general rules that have been found and reported to follow en_US
dc.description.sponsorship Faculty Research Grant of Indiana University South Bend en_US
dc.description.sponsorship This study is partially supported by the Faculty Research Grant of Indiana University South Bend. en_US
dc.identifier.citationcount 24
dc.identifier.doi 10.1080/16843703.2012.11673302
dc.identifier.endpage 433 en_US
dc.identifier.issn 1684-3703
dc.identifier.issn 1811-4857
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-84874329946
dc.identifier.scopusquality Q2
dc.identifier.startpage 421 en_US
dc.identifier.uri https://doi.org/10.1080/16843703.2012.11673302
dc.identifier.uri https://hdl.handle.net/20.500.14411/355
dc.identifier.volume 9 en_US
dc.identifier.wos WOS:000312110900007
dc.identifier.wosquality Q1
dc.institutionauthor Mıshra, Alok
dc.language.iso en en_US
dc.publisher Nctu-national Chiao Tung Univ Press en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 27
dc.subject Binary logistic regression en_US
dc.subject complexity metrics en_US
dc.subject fault-prone software module en_US
dc.title Experience in Predicting Fault-Prone Software Modules Using Complexity Metrics en_US
dc.type Article en_US
dc.wos.citedbyCount 26
dspace.entity.type Publication
relation.isAuthorOfPublication de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscovery de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections