Experience in Predicting Fault-Prone Software Modules Using Complexity Metrics

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Nctu-national Chiao Tung Univ Press

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Software Engineering
(2005)
Department of Software Engineering was founded in 2005 as the first department in Ankara in Software Engineering. The recent developments in current technologies such as Artificial Intelligence, Machine Learning, Big Data, and Blockchains, have placed Software Engineering among the top professions of today, and the future. The academic and research activities in the department are pursued with qualified faculty at Undergraduate, Graduate and Doctorate Degree levels. Our University is one of the two universities offering a Doctorate-level program in this field. In addition to focusing on the basic phases of software (analysis, design, development, testing) and relevant methodologies in detail, our department offers education in various areas of expertise, such as Object-oriented Analysis and Design, Human-Computer Interaction, Software Quality Assurance, Software Requirement Engineering, Software Design and Architecture, Software Project Management, Software Testing and Model-Driven Software Development. The curriculum of our Department is catered to graduate individuals who are prepared to take part in any phase of software development of large-scale software in line with the requirements of the software sector. Department of Software Engineering is accredited by MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) until September 30th, 2021, and has been granted the EUR-ACE label that is valid in Europe. This label provides our graduates with a vital head-start to be admitted to graduate-level programs, and into working environments in European Union countries. The Big Data and Cloud Computing Laboratory, as well as MobiLab where mobile applications are developed, SimLAB, the simulation laboratory for Medical Computing, and software education laboratories of the department are equipped with various software tools and hardware to enable our students to use state-of-the-art software technologies. Our graduates are employed in software and R&D companies (Technoparks), national/international institutions developing or utilizing software technologies (such as banks, healthcare institutions, the Information Technologies departments of private and public institutions, telecommunication companies, TÜİK, SPK, BDDK, EPDK, RK, or universities), and research institutions such TÜBİTAK.

Journal Issue

Abstract

Complexity metrics have been intensively studied in predicting fault-prone software modules. However, little work is done in studying how to effectively use the complexity metrics and the prediction models under realistic conditions. In this paper, we present a study showing how to utilize the prediction models generated from existing projects to improve the fault detection on other projects. The binary logistic regression method is used in studying publicly available data of five commercial products. Our study shows (1) models generated using more datasets can improve the prediction accuracy but not the recall rate; (2) lowering the cut-off value can improve the recall rate, but the number of false positives will be increased, which will result in higher maintenance effort. We further suggest that in order to improve model prediction efficiency, the selection of source datasets and the determination of cut-Off values should be based on specific properties of a project. So far, there are no general rules that have been found and reported to follow

Description

Mishra, Alok/0000-0003-1275-2050

Keywords

Binary logistic regression, complexity metrics, fault-prone software module

Turkish CoHE Thesis Center URL

Fields of Science

Citation

24

WoS Q

Q1

Scopus Q

Q2

Source

Volume

9

Issue

4

Start Page

421

End Page

433

Collections