Modeling of subsonic cavity flows by neural networks

dc.authoridEfe, Mehmet Önder/0000-0002-5992-895X
dc.authoridDebiasi, Marco/0000-0002-1941-5148
dc.authoridOzbay, Hitay/0000-0003-1134-0679
dc.authorscopusid7004595398
dc.authorscopusid6602459461
dc.authorscopusid7006205089
dc.authorscopusid7006742194
dc.authorwosidSamimy, Mo/N-5724-2015
dc.authorwosidEfe, Mehmet Önder/GPG-0907-2022
dc.authorwosidOzbay, Hitay/S-3885-2016
dc.contributor.authorEfe, MÖ
dc.contributor.authorDebiasi, M
dc.contributor.authorÖzbay, H
dc.contributor.authorSamimy, M
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:08:36Z
dc.date.available2024-07-05T15:08:36Z
dc.date.issued2004
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Mechatron Engn, TR-06836 Ankara, Turkeyen_US
dc.descriptionEfe, Mehmet Önder/0000-0002-5992-895X; Debiasi, Marco/0000-0002-1941-5148; Ozbay, Hitay/0000-0003-1134-0679en_US
dc.description.abstractInfluencing the behavior of a flow field is a core issue as its improvement can yield significant increase of the efficiency and performance of fluidic systems. On the other hand, the tools of classical control systems theory are not directly applicable to processes displaying spatial continuity as in fluid flows. The cavity flow is a good example of this and a recent research focus in aerospace science is its modeling and control. The objective is to develop a finite dimensional representative model for the system with appropriately defined inputs and outputs. Towards the goal of reconstructing the pressure fluctuations measured at the cavity floor, this paper-demonstrates that given some history of inputs and outputs, a neural network based feedforward model can be developed such that the response of the neural network matches the measured response. The advantages of using such a model arc the representational simplicity of the model, structural flexibility to enable controller design and the ability to Store information in an interconnected structure.en_US
dc.identifier.citation9
dc.identifier.doi10.1109/ICMECH.2004.1364500
dc.identifier.endpage565en_US
dc.identifier.isbn780385993
dc.identifier.scopus2-s2.0-13944262134
dc.identifier.startpage560en_US
dc.identifier.urihttps://doi.org/10.1109/ICMECH.2004.1364500
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1058
dc.identifier.wosWOS:000223969800100
dc.institutionauthorÖzbek, Mehmet Efe
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartofIEEE International Conference on Mechatronics (ICM 2004) -- JUN 03-05, 2004 -- Istanbul, TURKEYen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleModeling of subsonic cavity flows by neural networksen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication8a62c8fc-1922-41ab-b665-e9d69c5f2d85
relation.isAuthorOfPublication.latestForDiscovery8a62c8fc-1922-41ab-b665-e9d69c5f2d85
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections