Recycled Natural Rubber-Based Composites Reinforced with Nano Boron Nitride in Thermal Conductive and Electrical-Insulating Fields

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mechanical Engineering
(2009)
The Atılım University Department of Mechanical Engineering started education in 2009, and offers graduate and doctorate degree programs, in addition to its undergraduate program. Our main goal is to graduate Mechanical Engineers who have the skills to design, analyze and synthesize; who are able to convert advanced technology and innovations into products; and who have the culture of research and cooperation. While our graduates reach this goal, they adopt the principle of life-long learning, and develop a sense of entrepreneurship, paying importance to professional ethics. With a curriculum prepared in line with the criteria of MÜDEK, we help our students develop themselves professionally, and socially. Graduates of mechanical engineering may be employed in many sectors and in a wide array of positions. Able to work under any field that involves production and energy conversion, graduates of the department may also gain expertise in fields such as aviation, automotive, or material engineering.

Journal Issue

Abstract

In this research, recycled natural rubber (NR) based composites reinforced with the doped nano boron nitride (NBN) with the high resolution in thermal conductive and electrical-insulating field were designed, and their properties were studied. Good distribution of doped NBN in the matrix has shown substantial increments of thermal conductivity and high electrical insulation depending on the quantity in the matrix. Additionally, the thermal analysis indicates that NR/NBN composites have excellent heat-transfer capacity during heating and cooling processes, which suggests great potential application in thermal conductive and electrical insulating fields. The procedure can find multiscale particle-matching ways to achieve the maximum effective thermal conductivity under a given filler load. It should be emphasized that the optimized effective thermal conductivity obviously can be improved with the increase in the volume fraction of the reinforcement. © 2023, The Society for Experimental Mechanics, Inc.

Description

Keywords

Electrical-insulting field, Nano boron nitride, Recycled natural rubber, Thermal conductivity

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Scopus Q

Source

Conference Proceedings of the Society for Experimental Mechanics Series -- SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2022 -- 13 June 2022 through 16 June 2022 -- Pittsburgh -- 286979

Volume

Issue

Start Page

7

End Page

15

Collections