Hand gesture classification using inertial based sensors via a neural network

dc.authorscopusid57202129682
dc.authorscopusid6506642154
dc.authorscopusid16231740900
dc.contributor.authorAkan,E.
dc.contributor.authorTora,H.
dc.contributor.authorUslu,B.
dc.contributor.otherAirframe and Powerplant Maintenance
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:44:47Z
dc.date.available2024-07-05T15:44:47Z
dc.date.issued2017
dc.departmentAtılım Universityen_US
dc.department-tempAkan E., Electrical and Electronics Engineering, Atilim University, Ankara, Turkey; Tora H., Avionics/Electrical and Electronics Engineering, Atilim University, Ankara, Turkey; Uslu B., Electrical and Electronics Engineering, Atilim University, Ankara, Turkeyen_US
dc.description.abstractIn this study, a mobile phone equipped with four types of sensors namely, accelerometer, gyroscope, magnetometer and orientation, is used for gesture classification. Without feature selection, the raw data from the sensor outputs are processed and fed into a Multi-Layer Perceptron classifier for recognition. The user independent, single user dependent and multiple user dependent cases are all examined. Accuracy values of 91.66% for single user dependent case, 87.48% for multiple user dependent case and 60% for the user independent case are obtained. In addition, performance of each sensor is assessed separately and the highest performance is achieved with the orientation sensor. © 2017 IEEE.en_US
dc.identifier.citation9
dc.identifier.doi10.1109/ICECS.2017.8292074
dc.identifier.endpage143en_US
dc.identifier.isbn978-153861911-7
dc.identifier.scopus2-s2.0-85047266021
dc.identifier.startpage140en_US
dc.identifier.urihttps://doi.org/10.1109/ICECS.2017.8292074
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3826
dc.identifier.volume2018-Januaryen_US
dc.institutionauthorAkan, Erhan
dc.institutionauthorTora, Hakan
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofICECS 2017 - 24th IEEE International Conference on Electronics, Circuits and Systems -- 24th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2017 -- 5 December 2017 through 8 December 2017 -- Batumi -- 134675en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectaccelerometeren_US
dc.subjectgesture recognitionen_US
dc.subjectgyroscopeen_US
dc.subjectmagnetometeren_US
dc.subjectneural networken_US
dc.subjectorientation sensoren_US
dc.titleHand gesture classification using inertial based sensors via a neural networken_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication6206b957-7a99-4d81-be17-52b7cc69c3c4
relation.isAuthorOfPublication3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isAuthorOfPublication.latestForDiscovery6206b957-7a99-4d81-be17-52b7cc69c3c4
relation.isOrgUnitOfPublication0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5

Files

Collections