Hand Gesture Classification Using Inertial Based Sensors Via a Neural Network

dc.authorscopusid 57202129682
dc.authorscopusid 6506642154
dc.authorscopusid 16231740900
dc.contributor.author Akan,E.
dc.contributor.author Tora,H.
dc.contributor.author Uslu,B.
dc.contributor.other Airframe and Powerplant Maintenance
dc.contributor.other Department of Electrical & Electronics Engineering
dc.date.accessioned 2024-07-05T15:44:47Z
dc.date.available 2024-07-05T15:44:47Z
dc.date.issued 2017
dc.department Atılım University en_US
dc.department-temp Akan E., Electrical and Electronics Engineering, Atilim University, Ankara, Turkey; Tora H., Avionics/Electrical and Electronics Engineering, Atilim University, Ankara, Turkey; Uslu B., Electrical and Electronics Engineering, Atilim University, Ankara, Turkey en_US
dc.description.abstract In this study, a mobile phone equipped with four types of sensors namely, accelerometer, gyroscope, magnetometer and orientation, is used for gesture classification. Without feature selection, the raw data from the sensor outputs are processed and fed into a Multi-Layer Perceptron classifier for recognition. The user independent, single user dependent and multiple user dependent cases are all examined. Accuracy values of 91.66% for single user dependent case, 87.48% for multiple user dependent case and 60% for the user independent case are obtained. In addition, performance of each sensor is assessed separately and the highest performance is achieved with the orientation sensor. © 2017 IEEE. en_US
dc.identifier.citationcount 9
dc.identifier.doi 10.1109/ICECS.2017.8292074
dc.identifier.endpage 143 en_US
dc.identifier.isbn 978-153861911-7
dc.identifier.scopus 2-s2.0-85047266021
dc.identifier.startpage 140 en_US
dc.identifier.uri https://doi.org/10.1109/ICECS.2017.8292074
dc.identifier.uri https://hdl.handle.net/20.500.14411/3826
dc.identifier.volume 2018-January en_US
dc.institutionauthor Akan, Erhan
dc.institutionauthor Tora, Hakan
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof ICECS 2017 - 24th IEEE International Conference on Electronics, Circuits and Systems -- 24th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2017 -- 5 December 2017 through 8 December 2017 -- Batumi -- 134675 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 10
dc.subject accelerometer en_US
dc.subject gesture recognition en_US
dc.subject gyroscope en_US
dc.subject magnetometer en_US
dc.subject neural network en_US
dc.subject orientation sensor en_US
dc.title Hand Gesture Classification Using Inertial Based Sensors Via a Neural Network en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 6206b957-7a99-4d81-be17-52b7cc69c3c4
relation.isAuthorOfPublication 3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isAuthorOfPublication.latestForDiscovery 6206b957-7a99-4d81-be17-52b7cc69c3c4
relation.isOrgUnitOfPublication 0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery 0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5

Files

Collections