Advanced 3d Printed Bone Scaffolds With Sodium Alginate/Tri-calcium Phosphate/Probiotic Bacterial Hydroxyapatite: Enhanced Mechanical and Biocompatible Properties for Bone Tissue Engineering

dc.authorscopusid 59254158800
dc.authorscopusid 55883282000
dc.authorscopusid 57207117577
dc.authorscopusid 12797373800
dc.authorscopusid 55889464700
dc.authorscopusid 26659194500
dc.authorscopusid 57224535178
dc.authorwosid Gunduz, Oguzhan/E-5292-2011
dc.authorwosid Calikoglu-Koyuncu, Ayse Ceren/AAY-4110-2020
dc.authorwosid shafiei, rasoul/KFS-3650-2024
dc.contributor.author Nouri, Sabereh
dc.contributor.author Emtiazi, Giti
dc.contributor.author Ulag, Songul
dc.contributor.author Gunduz, Oguzhan
dc.contributor.author Koyuncu, Ayse Ceren Calikoglu
dc.contributor.author Roghanian, Rasoul
dc.contributor.author Sasmazel, Hilal Turkoglu
dc.contributor.other Metallurgical and Materials Engineering
dc.date.accessioned 2024-09-10T21:35:52Z
dc.date.available 2024-09-10T21:35:52Z
dc.date.issued 2024
dc.department Atılım University en_US
dc.department-temp [Nouri, Sabereh; Emtiazi, Giti; Roghanian, Rasoul; Shafiei, Rasoul] Univ Isfahan, Fac Biol Sci & Technol, Dept Cell & Mol Biol & Microbiol, Esfahan, Iran; [Nouri, Sabereh; Ulag, Songul; Gunduz, Oguzhan; Koyuncu, Ayse Ceren Calikoglu; Moradi, Armaghan] Marmara Univ, Ctr Nanotechnol & Biomat Applicat & Res NBUAM, Istanbul, Turkiye; [Ulag, Songul; Gunduz, Oguzhan; Koyuncu, Ayse Ceren Calikoglu; Moradi, Armaghan] Marmara Univ, Fac Technol, Dept Met & Mat Engn, Istanbul, Turkiye; [Tukay, Ari; Sasmazel, Hilal Turkoglu] Atilim Univ, Fac Engn, Met & Mat Engn Dept, Ankara, Turkiye en_US
dc.description.abstract Introduction: The increasing prevalence of severe bone diseases, such as osteoporosis and critical bone defects, necessitates the development of more effective bone substitutes. This study addresses this need by investigating 3D-printed bone scaffolds composed of sodium alginate and tricalcium phosphate, enhanced with three distinct types of hydroxyapatite (HA): bovine-derived HA, commercially available HA, and HA enriched with probiotic bacteria. We aim to evaluate the performance of these scaffolds in terms of mechanical strength, biocompatibility, and their ability to support bone regeneration. Methods: The scaffolds were analyzed through various tests, including X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) to characterization. Scanning Electron Microscopy (SEM) was used to examine pore structure, while swelling and degradation tests evaluated the scaffold's stability. Compression testing determined mechanical strength, and in vitro cell culture assays assessed cell proliferation, osteogenic differentiation, and biomineralization. Results: SEM results indicated that 3D scaffolds with probiotic bacterial HA had the desired 472 mu m pore size. These scaffolds demonstrated a strain of 29.26 % and a compressive strength of 10 MPa, meeting the mechanical standards of human trabecular bone. Cell culture studies revealed enhanced cell proliferation by 50 %, osteogenic differentiation with 15.3 U/mg ALP activity, and 1.22-fold biomineralization, suggesting they are highly biocompatible and promote bone growth. Conclusion: Probiotic bacterial HA scaffolds exhibit ideal properties and biocompatibility, enhancing bone regeneration and serving as an ideal alternative to chemical types. en_US
dc.description.sponsorship The authors thank the Microbiology Lab at the University of Isfahan, Iran, the Center for Nanotechnology & Biomaterials Application and Research (NBUAM) at Marmara University, Istanbul, Turkey, and the Metallurgical and Materials Engineering Department, Faculty of Engi-neering, Atilim University, Incek, Ankara, Turkey. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.polymer.2024.127523
dc.identifier.issn 0032-3861
dc.identifier.issn 1873-2291
dc.identifier.scopus 2-s2.0-85201911866
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.polymer.2024.127523
dc.identifier.volume 311 en_US
dc.identifier.wos WOS:001301973800001
dc.identifier.wosquality Q1
dc.institutionauthor Şaşmazel, Hilal Türkoğlu
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.ispartof Polymer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 4
dc.subject Bone scaffold en_US
dc.subject 3D printing en_US
dc.subject Probiotic bacterial hydroxyapatite en_US
dc.subject Biocompatibility en_US
dc.title Advanced 3d Printed Bone Scaffolds With Sodium Alginate/Tri-calcium Phosphate/Probiotic Bacterial Hydroxyapatite: Enhanced Mechanical and Biocompatible Properties for Bone Tissue Engineering en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication 89a1446a-af3c-4bd3-a3f6-5f29625b68fd
relation.isAuthorOfPublication.latestForDiscovery 89a1446a-af3c-4bd3-a3f6-5f29625b68fd
relation.isOrgUnitOfPublication 7cf7435b-3e8e-404e-adee-0f6f7dc8e070
relation.isOrgUnitOfPublication.latestForDiscovery 7cf7435b-3e8e-404e-adee-0f6f7dc8e070

Files

Collections