Detecting Cassava Mosaic Disease Using a Deep Residual Convolutional Neural Network With Distinct Block Processing

dc.contributor.author Oyewola, David Opeoluwa
dc.contributor.author Dada, Emmanuel Gbenga
dc.contributor.author Misra, Sanjay
dc.contributor.author Damasevicius, Robertas
dc.contributor.other Computer Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:21:24Z
dc.date.available 2024-07-05T15:21:24Z
dc.date.issued 2021
dc.description Damaševičius, Robertas/0000-0001-9990-1084; DADA, EMMANUEL GBENGA/0000-0002-1132-5447; Misra, Sanjay/0000-0002-3556-9331; en_US
dc.description.abstract For people in developing countries, cassava is a major source of calories and carbohydrates. However, Cassava Mosaic Disease (CMD) has become a major cause of concern among farmers in sub-Saharan Africa countries, which rely on cassava for both business and local consumption. The article proposes a novel deep residual convolution neural network (DRNN) for CMD detection in cassava leaf images. With the aid of distinct block processing, we can counterbalance the imbalanced image dataset of the cassava diseases and increase the number of images available for training and testing. Moreover, we adjust low contrast using Gamma correction and decorrelation stretching to enhance the color separation of an image with significant band-to-band correlation. Experimental results demonstrate that using a balanced dataset of images increases the accuracy of classification. The proposed DRNN model outperforms the plain convolutional neural network (PCNN) by a significant margin of 9.25% on the Cassava Disease Dataset from Kaggle. en_US
dc.identifier.doi 10.7717/peerj-cs.352
dc.identifier.issn 2376-5992
dc.identifier.scopus 2-s2.0-85102882306
dc.identifier.uri https://doi.org/10.7717/peerj-cs.352
dc.identifier.uri https://hdl.handle.net/20.500.14411/2079
dc.language.iso en en_US
dc.publisher Peerj inc en_US
dc.relation.ispartof PeerJ Computer Science
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Cassava disease en_US
dc.subject Pattern recognition en_US
dc.subject Image processing en_US
dc.subject Deep learning en_US
dc.subject Convolutional neural networks en_US
dc.subject Distinct block processing en_US
dc.subject Data augmentation en_US
dc.title Detecting Cassava Mosaic Disease Using a Deep Residual Convolutional Neural Network With Distinct Block Processing en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Damaševičius, Robertas/0000-0001-9990-1084
gdc.author.id DADA, EMMANUEL GBENGA/0000-0002-1132-5447
gdc.author.id Misra, Sanjay/0000-0002-3556-9331
gdc.author.institutional Mısra, Sanjay
gdc.author.scopusid 57222534732
gdc.author.scopusid 57151053600
gdc.author.scopusid 56962766700
gdc.author.scopusid 6603451290
gdc.author.wosid Damaševičius, Robertas/E-1387-2017
gdc.author.wosid DADA, EMMANUEL GBENGA/AAV-2728-2021
gdc.author.wosid Misra, Sanjay/K-2203-2014
gdc.author.wosid Dada, Dr. Emmanuel Gbenga/CAA-0153-2022
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Oyewola, David Opeoluwa] Fed Univ Kashere, Dept Math & Comp Sci, Gombe, Nigeria; [Dada, Emmanuel Gbenga] Univ Maiduguri, Dept Math Sci, Maiduguri, Nigeria; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, Ankara, Turkey; [Damasevicius, Robertas] Vytautas Magnus Univ, Dept Appl Informat, Kaunas, Lithuania en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage e352
gdc.description.volume 7 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3135361473
gdc.identifier.pmid 33817002
gdc.identifier.wos WOS:000624303600001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 88.0
gdc.oaire.influence 1.1641612E-8
gdc.oaire.isgreen true
gdc.oaire.keywords Image processing
gdc.oaire.keywords Algorithms and Analysis of Algorithms
gdc.oaire.keywords Cassava disease
gdc.oaire.keywords Pattern recognition
gdc.oaire.keywords Electronic computers. Computer science
gdc.oaire.keywords Distinct block processing
gdc.oaire.keywords Deep learning
gdc.oaire.keywords Convolutional neural networks
gdc.oaire.keywords QA75.5-76.95
gdc.oaire.popularity 9.269111E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 13.054
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 91
gdc.plumx.mendeley 131
gdc.plumx.pubmedcites 14
gdc.plumx.scopuscites 126
gdc.scopus.citedcount 127
gdc.wos.citedcount 78
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections