Detecting Cassava Mosaic Disease Using a Deep Residual Convolutional Neural Network With Distinct Block Processing
| dc.contributor.author | Oyewola, David Opeoluwa | |
| dc.contributor.author | Dada, Emmanuel Gbenga | |
| dc.contributor.author | Misra, Sanjay | |
| dc.contributor.author | Damasevicius, Robertas | |
| dc.contributor.other | Computer Engineering | |
| dc.contributor.other | 06. School Of Engineering | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:21:24Z | |
| dc.date.available | 2024-07-05T15:21:24Z | |
| dc.date.issued | 2021 | |
| dc.description | Damaševičius, Robertas/0000-0001-9990-1084; DADA, EMMANUEL GBENGA/0000-0002-1132-5447; Misra, Sanjay/0000-0002-3556-9331; | en_US | 
| dc.description.abstract | For people in developing countries, cassava is a major source of calories and carbohydrates. However, Cassava Mosaic Disease (CMD) has become a major cause of concern among farmers in sub-Saharan Africa countries, which rely on cassava for both business and local consumption. The article proposes a novel deep residual convolution neural network (DRNN) for CMD detection in cassava leaf images. With the aid of distinct block processing, we can counterbalance the imbalanced image dataset of the cassava diseases and increase the number of images available for training and testing. Moreover, we adjust low contrast using Gamma correction and decorrelation stretching to enhance the color separation of an image with significant band-to-band correlation. Experimental results demonstrate that using a balanced dataset of images increases the accuracy of classification. The proposed DRNN model outperforms the plain convolutional neural network (PCNN) by a significant margin of 9.25% on the Cassava Disease Dataset from Kaggle. | en_US | 
| dc.identifier.doi | 10.7717/peerj-cs.352 | |
| dc.identifier.issn | 2376-5992 | |
| dc.identifier.scopus | 2-s2.0-85102882306 | |
| dc.identifier.uri | https://doi.org/10.7717/peerj-cs.352 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/2079 | |
| dc.language.iso | en | en_US | 
| dc.publisher | Peerj inc | en_US | 
| dc.relation.ispartof | PeerJ Computer Science | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US | 
| dc.subject | Cassava disease | en_US | 
| dc.subject | Pattern recognition | en_US | 
| dc.subject | Image processing | en_US | 
| dc.subject | Deep learning | en_US | 
| dc.subject | Convolutional neural networks | en_US | 
| dc.subject | Distinct block processing | en_US | 
| dc.subject | Data augmentation | en_US | 
| dc.title | Detecting Cassava Mosaic Disease Using a Deep Residual Convolutional Neural Network With Distinct Block Processing | en_US | 
| dc.type | Article | en_US | 
| dspace.entity.type | Publication | |
| gdc.author.id | Damaševičius, Robertas/0000-0001-9990-1084 | |
| gdc.author.id | DADA, EMMANUEL GBENGA/0000-0002-1132-5447 | |
| gdc.author.id | Misra, Sanjay/0000-0002-3556-9331 | |
| gdc.author.institutional | Mısra, Sanjay | |
| gdc.author.scopusid | 57222534732 | |
| gdc.author.scopusid | 57151053600 | |
| gdc.author.scopusid | 56962766700 | |
| gdc.author.scopusid | 6603451290 | |
| gdc.author.wosid | Damaševičius, Robertas/E-1387-2017 | |
| gdc.author.wosid | DADA, EMMANUEL GBENGA/AAV-2728-2021 | |
| gdc.author.wosid | Misra, Sanjay/K-2203-2014 | |
| gdc.author.wosid | Dada, Dr. Emmanuel Gbenga/CAA-0153-2022 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C3 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US | 
| gdc.description.departmenttemp | [Oyewola, David Opeoluwa] Fed Univ Kashere, Dept Math & Comp Sci, Gombe, Nigeria; [Dada, Emmanuel Gbenga] Univ Maiduguri, Dept Math Sci, Maiduguri, Nigeria; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, Ankara, Turkey; [Damasevicius, Robertas] Vytautas Magnus Univ, Dept Appl Informat, Kaunas, Lithuania | en_US | 
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US | 
| gdc.description.startpage | e352 | |
| gdc.description.volume | 7 | en_US | 
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W3135361473 | |
| gdc.identifier.pmid | 33817002 | |
| gdc.identifier.wos | WOS:000624303600001 | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 88.0 | |
| gdc.oaire.influence | 1.1641612E-8 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Image processing | |
| gdc.oaire.keywords | Algorithms and Analysis of Algorithms | |
| gdc.oaire.keywords | Cassava disease | |
| gdc.oaire.keywords | Pattern recognition | |
| gdc.oaire.keywords | Electronic computers. Computer science | |
| gdc.oaire.keywords | Distinct block processing | |
| gdc.oaire.keywords | Deep learning | |
| gdc.oaire.keywords | Convolutional neural networks | |
| gdc.oaire.keywords | QA75.5-76.95 | |
| gdc.oaire.popularity | 9.269111E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 13.054 | |
| gdc.openalex.normalizedpercentile | 1.0 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 91 | |
| gdc.plumx.mendeley | 131 | |
| gdc.plumx.pubmedcites | 14 | |
| gdc.plumx.scopuscites | 126 | |
| gdc.scopus.citedcount | 127 | |
| gdc.wos.citedcount | 78 | |
| relation.isAuthorOfPublication | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
| relation.isAuthorOfPublication.latestForDiscovery | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
| relation.isOrgUnitOfPublication | e0809e2c-77a7-4f04-9cb0-4bccec9395fa | |
| relation.isOrgUnitOfPublication | 4abda634-67fd-417f-bee6-59c29fc99997 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | e0809e2c-77a7-4f04-9cb0-4bccec9395fa |