A Study of Load Demand Forecasting Models in Electricity Using Artificial Neural Networks and Fuzzy Logic Model

dc.authoridErkan, Turan Erman/0000-0002-0078-711X
dc.authoridalani, barq/0000-0002-7848-0417
dc.authorscopusid57535933000
dc.authorscopusid58491686500
dc.authorwosidErkan, Turan Erman/HLP-6760-2023
dc.contributor.authorAl-ani, B. R. K.
dc.contributor.authorErkan, E. T.
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:17:23Z
dc.date.available2024-07-05T15:17:23Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Al-ani, B. R. K.] Atilim Univ, Grad Sch Nat & Appl Sci, Ankara, Turkey; [Erkan, E. T.] Atilim Univ, Dept Ind Engn, Ankara, Turkeyen_US
dc.descriptionErkan, Turan Erman/0000-0002-0078-711X; alani, barq/0000-0002-7848-0417en_US
dc.description.abstractSince load time series are very changeable. demand forecasting of the short-term load is challenging based on hourly, daily, weekly, and monthly load forecast demand. As a result, the Turkish Electricity Transmission Company (TEA) load forecasting is proposed in this paper using artificial neural networks (ANN) and fuzzy logic (FL). Load forecasting enables utilities to purchase and generate electricity, load shift, and build infrastructure. A load forecast was classified into three sorts (hourly, weekly and monthly). Over time, forecasting power loads with artificial neural networks and fuzzy logic reveals a massive decrease in ANN and a progressive increase in FL from 24 to 168 hours. As illustrated, fuzzy logic and artificial neural netANorks outperform regression algorithms. This study has the highest growth and means absolute percentage error (MAPE) rates compared to FL and ANN. Although regression has the highest prediction growth rate, it is less precise than FL and ANN due to their lower MAPE percentage. Artificial Neural Networks and Fuzzy Logic are emerging technologies capable of forecasting and mitigating demand volatility. Future research can forecast various Turkish states using the same approach.en_US
dc.identifier.citation5
dc.identifier.doi10.5829/ije.2022.35.06c.02
dc.identifier.endpage8en_US
dc.identifier.issn1025-2495
dc.identifier.issn1735-9244
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85126723094
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.5829/ije.2022.35.06c.02
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1747
dc.identifier.volume35en_US
dc.identifier.wosWOS:000766673500001
dc.institutionauthorErkan, Turan Erman
dc.language.isoenen_US
dc.publisherMaterials & Energy Research Center-mercen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDemand forecastingen_US
dc.subjectShort-term loaden_US
dc.subjectTurkish Electricity Transmission Companyen_US
dc.subjectArtificial neural networksen_US
dc.subjectFuzzy Logicen_US
dc.subjectLoad forecastingen_US
dc.titleA Study of Load Demand Forecasting Models in Electricity Using Artificial Neural Networks and Fuzzy Logic Modelen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication232686ec-1b23-4304-a125-d9a30dfc2e74
relation.isAuthorOfPublication.latestForDiscovery232686ec-1b23-4304-a125-d9a30dfc2e74
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections