A Study of Load Demand Forecasting Models in Electricity Using Artificial Neural Networks and Fuzzy Logic Model

dc.contributor.author Al-ani, B. R. K.
dc.contributor.author Erkan, E. T.
dc.contributor.other Industrial Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:17:23Z
dc.date.available 2024-07-05T15:17:23Z
dc.date.issued 2022
dc.description Erkan, Turan Erman/0000-0002-0078-711X; alani, barq/0000-0002-7848-0417 en_US
dc.description.abstract Since load time series are very changeable. demand forecasting of the short-term load is challenging based on hourly, daily, weekly, and monthly load forecast demand. As a result, the Turkish Electricity Transmission Company (TEA) load forecasting is proposed in this paper using artificial neural networks (ANN) and fuzzy logic (FL). Load forecasting enables utilities to purchase and generate electricity, load shift, and build infrastructure. A load forecast was classified into three sorts (hourly, weekly and monthly). Over time, forecasting power loads with artificial neural networks and fuzzy logic reveals a massive decrease in ANN and a progressive increase in FL from 24 to 168 hours. As illustrated, fuzzy logic and artificial neural netANorks outperform regression algorithms. This study has the highest growth and means absolute percentage error (MAPE) rates compared to FL and ANN. Although regression has the highest prediction growth rate, it is less precise than FL and ANN due to their lower MAPE percentage. Artificial Neural Networks and Fuzzy Logic are emerging technologies capable of forecasting and mitigating demand volatility. Future research can forecast various Turkish states using the same approach. en_US
dc.identifier.doi 10.5829/ije.2022.35.06c.02
dc.identifier.issn 1025-2495
dc.identifier.issn 1735-9244
dc.identifier.issn 2423-7167
dc.identifier.scopus 2-s2.0-85126723094
dc.identifier.uri https://doi.org/10.5829/ije.2022.35.06c.02
dc.identifier.uri https://hdl.handle.net/20.500.14411/1747
dc.language.iso en en_US
dc.publisher Materials & Energy Research Center-merc en_US
dc.relation.ispartof International Journal of Engineering
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Demand forecasting en_US
dc.subject Short-term load en_US
dc.subject Turkish Electricity Transmission Company en_US
dc.subject Artificial neural networks en_US
dc.subject Fuzzy Logic en_US
dc.subject Load forecasting en_US
dc.title A Study of Load Demand Forecasting Models in Electricity Using Artificial Neural Networks and Fuzzy Logic Model en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Erkan, Turan Erman/0000-0002-0078-711X
gdc.author.id alani, barq/0000-0002-7848-0417
gdc.author.institutional Erkan, Turan Erman
gdc.author.scopusid 57535933000
gdc.author.scopusid 58491686500
gdc.author.wosid Erkan, Turan Erman/HLP-6760-2023
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Al-ani, B. R. K.] Atilim Univ, Grad Sch Nat & Appl Sci, Ankara, Turkey; [Erkan, E. T.] Atilim Univ, Dept Ind Engn, Ankara, Turkey en_US
gdc.description.endpage 8 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1 en_US
gdc.description.volume 35 en_US
gdc.identifier.openalex W4226241839
gdc.identifier.wos WOS:000766673500001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.7812577E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.32687E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.726
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 25
gdc.plumx.scopuscites 11
gdc.scopus.citedcount 11
gdc.wos.citedcount 8
relation.isAuthorOfPublication 232686ec-1b23-4304-a125-d9a30dfc2e74
relation.isAuthorOfPublication.latestForDiscovery 232686ec-1b23-4304-a125-d9a30dfc2e74
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections