A Study of Load Demand Forecasting Models in Electricity Using Artificial Neural Networks and Fuzzy Logic Model

dc.authorid Erkan, Turan Erman/0000-0002-0078-711X
dc.authorid alani, barq/0000-0002-7848-0417
dc.authorscopusid 57535933000
dc.authorscopusid 58491686500
dc.authorwosid Erkan, Turan Erman/HLP-6760-2023
dc.contributor.author Al-ani, B. R. K.
dc.contributor.author Erkan, E. T.
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:17:23Z
dc.date.available 2024-07-05T15:17:23Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp [Al-ani, B. R. K.] Atilim Univ, Grad Sch Nat & Appl Sci, Ankara, Turkey; [Erkan, E. T.] Atilim Univ, Dept Ind Engn, Ankara, Turkey en_US
dc.description Erkan, Turan Erman/0000-0002-0078-711X; alani, barq/0000-0002-7848-0417 en_US
dc.description.abstract Since load time series are very changeable. demand forecasting of the short-term load is challenging based on hourly, daily, weekly, and monthly load forecast demand. As a result, the Turkish Electricity Transmission Company (TEA) load forecasting is proposed in this paper using artificial neural networks (ANN) and fuzzy logic (FL). Load forecasting enables utilities to purchase and generate electricity, load shift, and build infrastructure. A load forecast was classified into three sorts (hourly, weekly and monthly). Over time, forecasting power loads with artificial neural networks and fuzzy logic reveals a massive decrease in ANN and a progressive increase in FL from 24 to 168 hours. As illustrated, fuzzy logic and artificial neural netANorks outperform regression algorithms. This study has the highest growth and means absolute percentage error (MAPE) rates compared to FL and ANN. Although regression has the highest prediction growth rate, it is less precise than FL and ANN due to their lower MAPE percentage. Artificial Neural Networks and Fuzzy Logic are emerging technologies capable of forecasting and mitigating demand volatility. Future research can forecast various Turkish states using the same approach. en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.5829/ije.2022.35.06c.02
dc.identifier.endpage 8 en_US
dc.identifier.issn 1025-2495
dc.identifier.issn 1735-9244
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85126723094
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.5829/ije.2022.35.06c.02
dc.identifier.uri https://hdl.handle.net/20.500.14411/1747
dc.identifier.volume 35 en_US
dc.identifier.wos WOS:000766673500001
dc.institutionauthor Erkan, Turan Erman
dc.language.iso en en_US
dc.publisher Materials & Energy Research Center-merc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 10
dc.subject Demand forecasting en_US
dc.subject Short-term load en_US
dc.subject Turkish Electricity Transmission Company en_US
dc.subject Artificial neural networks en_US
dc.subject Fuzzy Logic en_US
dc.subject Load forecasting en_US
dc.title A Study of Load Demand Forecasting Models in Electricity Using Artificial Neural Networks and Fuzzy Logic Model en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication 232686ec-1b23-4304-a125-d9a30dfc2e74
relation.isAuthorOfPublication.latestForDiscovery 232686ec-1b23-4304-a125-d9a30dfc2e74
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections