A Study of Load Demand Forecasting Models in Electricity Using Artificial Neural Networks and Fuzzy Logic Model

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Materials & Energy Research Center-merc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

Since load time series are very changeable. demand forecasting of the short-term load is challenging based on hourly, daily, weekly, and monthly load forecast demand. As a result, the Turkish Electricity Transmission Company (TEA) load forecasting is proposed in this paper using artificial neural networks (ANN) and fuzzy logic (FL). Load forecasting enables utilities to purchase and generate electricity, load shift, and build infrastructure. A load forecast was classified into three sorts (hourly, weekly and monthly). Over time, forecasting power loads with artificial neural networks and fuzzy logic reveals a massive decrease in ANN and a progressive increase in FL from 24 to 168 hours. As illustrated, fuzzy logic and artificial neural netANorks outperform regression algorithms. This study has the highest growth and means absolute percentage error (MAPE) rates compared to FL and ANN. Although regression has the highest prediction growth rate, it is less precise than FL and ANN due to their lower MAPE percentage. Artificial Neural Networks and Fuzzy Logic are emerging technologies capable of forecasting and mitigating demand volatility. Future research can forecast various Turkish states using the same approach.

Description

Erkan, Turan Erman/0000-0002-0078-711X; alani, barq/0000-0002-7848-0417

Keywords

Demand forecasting, Short-term load, Turkish Electricity Transmission Company, Artificial neural networks, Fuzzy Logic, Load forecasting

Turkish CoHE Thesis Center URL

Fields of Science

Citation

5

WoS Q

Scopus Q

Source

Volume

35

Issue

6

Start Page

1

End Page

8

Collections