Performance Evaluation of Self Organizing Neural Networks for Clustering in Esm Systems

No Thumbnail Available

Date

2014

Authors

Gencol, Kenan
Gençol, Kenan
Tora, Hakan
Tora, Hakan

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Airframe and Powerplant Maintenance
(2012)
The Atılım University Department of Airframe and Powerplant Maintenance has been offering Civil Aviation education in English since 2012. In an effort to provide the best level of education, ATILIM UNIVERSITY demonstrated its merit as a role model in Civil Aviation Education last year by being granted a SHY 147 certificate with the status of “Approved Aircraft Maintenance Training Institution” by the General Directorate of Civil Aviation. The SHY 147 is a certificate for Approved Aircraft Maintenance Training Institutions. It is granted to institutions where training programs have undergone inspection, and the quality of the education offered has been approved by the General Directorate of Civil Aviation. With our Civil Aviation Training Center at Esenboğa Airport (our hangar), and the two Cessna-337 planes with double piston engines both of which are fully operational, as well our Beechcraft C90 Kingait plaine with double Turboprop engines, Atılım University is an institution to offer hands-on technical training in civil aviation, and one that strives to take the education it offers to the extremes in terms of technology. The Atılım university Graduate School Department of Airframe and Powerplant Maintenance is a fully-equipped civil aviation school to complement its theoretical education with hands-on training using planes of various kinds. Even before their graduation, most of our students are hired in Turkey’s most prestigious institutions in such a rapidly-developing sector. We are looking forward to welcoming you at this modern and contemporary institution for your education in civil aviation.

Journal Issue

Abstract

Electronic Support Measures (ESM) system is an important function of electronic warfare which provides the real time projection of radar activities. Such systems may encounter with very high density pulse sequences and it is the main task of an ESM system to deinterleave these mixed pulse trains with high accuracy and minimum computation time. These systems heavily depend on time of arrival analysis and need efficient clustering algorithms to assist deinterleaving process in modern evolving environments. On the other hand, self organizing neural networks stand very promising for this type of radar pulse clustering. In this study, performances of self organizing neural networks that meet such clustering criteria are evaluated in detail and the results are presented.

Description

GENCOL, Kenan/0000-0003-4044-3482

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

2

WoS Q

Scopus Q

Source

22nd IEEE Signal Processing and Communications Applications Conference (SIU) -- APR 23-25, 2014 -- Karadeniz Teknik Univ, Trabzon, TURKEY

Volume

Issue

Start Page

2233

End Page

2236

Collections