Fitting of dynamic recurrent neural network models to sensory stimulus-response data

dc.authoridDoruk, Ozgur/0000-0002-9217-0845
dc.authorscopusid8503734100
dc.authorscopusid7404451228
dc.authorwosidDoruk, Ozgur/T-9951-2018
dc.contributor.authorDoruk, R. Ozgur
dc.contributor.authorZhang, Kechen
dc.contributor.otherElectrical-Electronics Engineering
dc.date.accessioned2024-07-05T15:26:51Z
dc.date.available2024-07-05T15:26:51Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-temp[Doruk, R. Ozgur] Atilim Univ, Dept Elect & Elect Engn, Kizilcasar Mahallesi, TR-06836 Ankara, Turkey; [Zhang, Kechen] Johns Hopkins Sch Med, Dept Biomed Engn, 720 Rutland Ave,Traylor 407, Baltimore, MD 21205 USAen_US
dc.descriptionDoruk, Ozgur/0000-0002-9217-0845en_US
dc.description.abstractWe present a theoretical study aiming at model fitting for sensory neurons. Conventional neural network training approaches are not applicable to this problem due to lack of continuous data. Although the stimulus can be considered as a smooth time-dependent variable, the associated response will be a set of neural spike timings (roughly the instants of successive action potential peaks) that have no amplitude information. A recurrent neural network model can be fitted to such a stimulus-response data pair by using the maximum likelihood estimation method where the likelihood function is derived from Poisson statistics of neural spiking. The universal approximation feature of the recurrent dynamical neuron network models allows us to describe excitatory-inhibitory characteristics of an actual sensory neural network with any desired number of neurons. The stimulus data are generated by a phased cosine Fourier series having a fixed amplitude and frequency but a randomly shot phase. Various values of amplitude, stimulus component size, and sample size are applied in order to examine the effect of the stimulus to the identification process. Results are presented in tabular and graphical forms at the end of this text. In addition, to demonstrate the success of this research, a study involving the same model, nominal parameters and stimulus structure, and another study that works on different models are compared to that of this research.en_US
dc.description.sponsorshipTurkish Scientific and Technological Research Council [DB-2219]en_US
dc.description.sponsorshipThis study was partially supported by the Turkish Scientific and Technological Research Council's DB-2219 Grant Program.en_US
dc.identifier.citation6
dc.identifier.doi10.1007/s10867-018-9501-z
dc.identifier.endpage469en_US
dc.identifier.issn0092-0606
dc.identifier.issn1573-0689
dc.identifier.issue3en_US
dc.identifier.pmid29860641
dc.identifier.scopus2-s2.0-85047961220
dc.identifier.startpage449en_US
dc.identifier.urihttps://doi.org/10.1007/s10867-018-9501-z
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2611
dc.identifier.volume44en_US
dc.identifier.wosWOS:000441201500012
dc.identifier.wosqualityQ4
dc.institutionauthorDoruk, Reşat Özgür
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSensory neuronsen_US
dc.subjectRecurrent neural networken_US
dc.subjectExcitatory neuronen_US
dc.subjectInhibitory neuronen_US
dc.subjectNeural spikingen_US
dc.subjectMaximum likelihood estimationen_US
dc.titleFitting of dynamic recurrent neural network models to sensory stimulus-response dataen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationbbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isAuthorOfPublication.latestForDiscoverybbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isOrgUnitOfPublication032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication.latestForDiscovery032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections