Fitting of Dynamic Recurrent Neural Network Models To Sensory Stimulus-Response Data

dc.contributor.author Doruk, R. Ozgur
dc.contributor.author Zhang, Kechen
dc.date.accessioned 2024-07-05T15:26:51Z
dc.date.available 2024-07-05T15:26:51Z
dc.date.issued 2018
dc.description Doruk, Ozgur/0000-0002-9217-0845 en_US
dc.description.abstract We present a theoretical study aiming at model fitting for sensory neurons. Conventional neural network training approaches are not applicable to this problem due to lack of continuous data. Although the stimulus can be considered as a smooth time-dependent variable, the associated response will be a set of neural spike timings (roughly the instants of successive action potential peaks) that have no amplitude information. A recurrent neural network model can be fitted to such a stimulus-response data pair by using the maximum likelihood estimation method where the likelihood function is derived from Poisson statistics of neural spiking. The universal approximation feature of the recurrent dynamical neuron network models allows us to describe excitatory-inhibitory characteristics of an actual sensory neural network with any desired number of neurons. The stimulus data are generated by a phased cosine Fourier series having a fixed amplitude and frequency but a randomly shot phase. Various values of amplitude, stimulus component size, and sample size are applied in order to examine the effect of the stimulus to the identification process. Results are presented in tabular and graphical forms at the end of this text. In addition, to demonstrate the success of this research, a study involving the same model, nominal parameters and stimulus structure, and another study that works on different models are compared to that of this research. en_US
dc.description.sponsorship Turkish Scientific and Technological Research Council [DB-2219] en_US
dc.description.sponsorship This study was partially supported by the Turkish Scientific and Technological Research Council's DB-2219 Grant Program. en_US
dc.identifier.doi 10.1007/s10867-018-9501-z
dc.identifier.issn 0092-0606
dc.identifier.issn 1573-0689
dc.identifier.scopus 2-s2.0-85047961220
dc.identifier.uri https://doi.org/10.1007/s10867-018-9501-z
dc.identifier.uri https://hdl.handle.net/20.500.14411/2611
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Journal of Biological Physics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Sensory neurons en_US
dc.subject Recurrent neural network en_US
dc.subject Excitatory neuron en_US
dc.subject Inhibitory neuron en_US
dc.subject Neural spiking en_US
dc.subject Maximum likelihood estimation en_US
dc.title Fitting of Dynamic Recurrent Neural Network Models To Sensory Stimulus-Response Data en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Doruk, Ozgur/0000-0002-9217-0845
gdc.author.scopusid 8503734100
gdc.author.scopusid 7404451228
gdc.author.wosid Doruk, Ozgur/T-9951-2018
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Doruk, R. Ozgur] Atilim Univ, Dept Elect & Elect Engn, Kizilcasar Mahallesi, TR-06836 Ankara, Turkey; [Zhang, Kechen] Johns Hopkins Sch Med, Dept Biomed Engn, 720 Rutland Ave,Traylor 407, Baltimore, MD 21205 USA en_US
gdc.description.endpage 469 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 449 en_US
gdc.description.volume 44 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2962802967
gdc.identifier.pmid 29860641
gdc.identifier.wos WOS:000441201500012
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.7085194E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Sensory Receptor Cells
gdc.oaire.keywords Quantitative Biology - Neurons and Cognition
gdc.oaire.keywords FOS: Biological sciences
gdc.oaire.keywords Models, Neurological
gdc.oaire.keywords Reaction Time
gdc.oaire.keywords Action Potentials
gdc.oaire.keywords Animals
gdc.oaire.keywords Neurons and Cognition (q-bio.NC)
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.keywords Electric Stimulation
gdc.oaire.keywords Photic Stimulation
gdc.oaire.popularity 3.533214E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.57913004
gdc.openalex.normalizedpercentile 0.64
gdc.opencitations.count 5
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 16
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Doruk, Reşat Özgür
gdc.wos.citedcount 6
relation.isAuthorOfPublication bbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isAuthorOfPublication.latestForDiscovery bbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isOrgUnitOfPublication 032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections