An Extended Kalman Filtering Approach for the Estimation of Human Head Tissue Conductivities by Using Eeg Data: a Simulation Study

dc.authorid Sengul, Gokhan/0000-0003-2273-4411
dc.authorscopusid 8402817900
dc.authorscopusid 6603193438
dc.authorwosid Baysal, Ugur/AAJ-5711-2020
dc.authorwosid baysal, ugur/M-9784-2018
dc.authorwosid Sengul, Gokhan/G-8213-2016
dc.contributor.author Sengul, G.
dc.contributor.author Baysal, U.
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:11:05Z
dc.date.available 2024-07-05T15:11:05Z
dc.date.issued 2012
dc.department Atılım University en_US
dc.department-temp [Sengul, G.] Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey; [Baysal, U.] Hacettepe Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey en_US
dc.description Sengul, Gokhan/0000-0003-2273-4411 en_US
dc.description.abstract In this study, we propose an extended Kalman filter approach for the estimation of the human head tissue conductivities in vivo by using electroencephalogram (EEG) data. Since the relationship between the surface potentials and conductivity distribution is nonlinear, the proposed algorithm first linearizes the system and applies extended Kalman filtering. By using a three-compartment realistic head model obtained from the magnetic resonance images of a real subject, a known dipole assumption and 32 electrode positions, the performance of the proposed method is tested in simulation studies and it is shown that the proposed algorithm estimates the tissue conductivities with less than 1% error in noiseless measurements and less than 5% error when the signal-to-noise ratio is 40 dB or higher. We conclude that the proposed extended Kalman filter approach successfully estimates the tissue conductivities in vivo. en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.1088/0967-3334/33/4/571
dc.identifier.endpage 586 en_US
dc.identifier.issn 0967-3334
dc.identifier.issn 1361-6579
dc.identifier.issue 4 en_US
dc.identifier.pmid 22414485
dc.identifier.scopus 2-s2.0-84858821523
dc.identifier.startpage 571 en_US
dc.identifier.uri https://doi.org/10.1088/0967-3334/33/4/571
dc.identifier.uri https://hdl.handle.net/20.500.14411/1404
dc.identifier.volume 33 en_US
dc.identifier.wos WOS:000302135100003
dc.identifier.wosquality Q2
dc.institutionauthor Şengül, Gökhan
dc.language.iso en en_US
dc.publisher Iop Publishing Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 6
dc.subject conductivity estimation en_US
dc.subject extended Kalman filter en_US
dc.subject EEG en_US
dc.subject source localization en_US
dc.title An Extended Kalman Filtering Approach for the Estimation of Human Head Tissue Conductivities by Using Eeg Data: a Simulation Study en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication.latestForDiscovery f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections