A two-step machine learning approach to predict S&P 500 bubbles

dc.authorid Ünlü, Kamil Demirberk/0000-0002-2393-6691
dc.authorid Basoglu Kabran, Fatma/0000-0002-0212-5785
dc.authorscopusid 57217595406
dc.authorscopusid 57210105250
dc.authorwosid Ünlü, Kamil Demirberk/AAL-5952-2020
dc.contributor.author Kabran, Fatma Basoglu
dc.contributor.author Unlu, Kamil Demirberk
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:39:56Z
dc.date.available 2024-07-05T15:39:56Z
dc.date.issued 2021
dc.department Atılım University en_US
dc.department-temp [Kabran, Fatma Basoglu] Izmir Kavram Vocat Sch, Dept Finance Banking & Insurance, Izmir, Turkey; [Unlu, Kamil Demirberk] Atilim Univ, Dept Math, Ankara, Turkey en_US
dc.description Ünlü, Kamil Demirberk/0000-0002-2393-6691; Basoglu Kabran, Fatma/0000-0002-0212-5785 en_US
dc.description.abstract In this paper, we are interested in predicting the bubbles in the S&P 500 stock market with a two-step machine learning approach that employs a real-time bubble detection test and support vector machine (SVM). SVM as a nonparametric binary classification technique is already a widely used method in financial time series forecasting. In the literature, a bubble is often defined as a situation where the asset price exceeds its fundamental value. As one of the early warning signals, prediction of bubbles is vital for policymakers and regulators who are responsible to take preemptive measures against the future crises. Therefore, many attempts have been made to understand the main factors in bubble formation and to predict them in their earlier phases. Our analysis consists of two steps. The first step is to identify the bubbles in the S&P 500 index using a widely recognized right-tailed unit root test. Then, SVM is employed to predict the bubbles by macroeconomic indicators. Also, we compare SVM with different supervised learning algorithms by usingk-fold cross-validation. The experimental results show that the proposed approach with high predictive power could be a favourable alternative in bubble prediction. en_US
dc.identifier.citationcount 7
dc.identifier.doi 10.1080/02664763.2020.1823947
dc.identifier.endpage 2794 en_US
dc.identifier.issn 0266-4763
dc.identifier.issn 1360-0532
dc.identifier.issue 13-15 en_US
dc.identifier.pmid 35707077
dc.identifier.scopus 2-s2.0-85091464751
dc.identifier.startpage 2776 en_US
dc.identifier.uri https://doi.org/10.1080/02664763.2020.1823947
dc.identifier.uri https://hdl.handle.net/20.500.14411/3258
dc.identifier.volume 48 en_US
dc.identifier.wos WOS:000571943800001
dc.identifier.wosquality Q2
dc.institutionauthor Ünlü, Kamil Demirberk
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 8
dc.subject Bubbles en_US
dc.subject early warning en_US
dc.subject machine learning en_US
dc.subject support vector machines en_US
dc.subject macroeconomic indicators en_US
dc.title A two-step machine learning approach to predict S&P 500 bubbles en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscovery b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections