A two-step machine learning approach to predict S&P 500 bubbles

dc.authoridÜnlü, Kamil Demirberk/0000-0002-2393-6691
dc.authoridBasoglu Kabran, Fatma/0000-0002-0212-5785
dc.authorscopusid57217595406
dc.authorscopusid57210105250
dc.authorwosidÜnlü, Kamil Demirberk/AAL-5952-2020
dc.contributor.authorKabran, Fatma Basoglu
dc.contributor.authorUnlu, Kamil Demirberk
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:39:56Z
dc.date.available2024-07-05T15:39:56Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Kabran, Fatma Basoglu] Izmir Kavram Vocat Sch, Dept Finance Banking & Insurance, Izmir, Turkey; [Unlu, Kamil Demirberk] Atilim Univ, Dept Math, Ankara, Turkeyen_US
dc.descriptionÜnlü, Kamil Demirberk/0000-0002-2393-6691; Basoglu Kabran, Fatma/0000-0002-0212-5785en_US
dc.description.abstractIn this paper, we are interested in predicting the bubbles in the S&P 500 stock market with a two-step machine learning approach that employs a real-time bubble detection test and support vector machine (SVM). SVM as a nonparametric binary classification technique is already a widely used method in financial time series forecasting. In the literature, a bubble is often defined as a situation where the asset price exceeds its fundamental value. As one of the early warning signals, prediction of bubbles is vital for policymakers and regulators who are responsible to take preemptive measures against the future crises. Therefore, many attempts have been made to understand the main factors in bubble formation and to predict them in their earlier phases. Our analysis consists of two steps. The first step is to identify the bubbles in the S&P 500 index using a widely recognized right-tailed unit root test. Then, SVM is employed to predict the bubbles by macroeconomic indicators. Also, we compare SVM with different supervised learning algorithms by usingk-fold cross-validation. The experimental results show that the proposed approach with high predictive power could be a favourable alternative in bubble prediction.en_US
dc.identifier.citation7
dc.identifier.doi10.1080/02664763.2020.1823947
dc.identifier.endpage2794en_US
dc.identifier.issn0266-4763
dc.identifier.issn1360-0532
dc.identifier.issue13-15en_US
dc.identifier.pmid35707077
dc.identifier.scopus2-s2.0-85091464751
dc.identifier.startpage2776en_US
dc.identifier.urihttps://doi.org/10.1080/02664763.2020.1823947
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3258
dc.identifier.volume48en_US
dc.identifier.wosWOS:000571943800001
dc.identifier.wosqualityQ2
dc.institutionauthorÜnlü, Kamil Demirberk
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBubblesen_US
dc.subjectearly warningen_US
dc.subjectmachine learningen_US
dc.subjectsupport vector machinesen_US
dc.subjectmacroeconomic indicatorsen_US
dc.titleA two-step machine learning approach to predict S&P 500 bubblesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscoveryb46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections