DISTRIBUTIONS OF RANDOM VARIABLES INVOLVED IN DISCRETE CENSORED δ-SHOCK MODELS

dc.authorscopusid6602310120
dc.authorscopusid8203625300
dc.contributor.authorChadjiconstantinidis, Stathis
dc.contributor.authorEryılmaz, Serkan
dc.contributor.authorEryilmaz, Serkan
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:23:24Z
dc.date.available2024-07-05T15:23:24Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Chadjiconstantinidis, Stathis] Univ Piraeus, Dept Stat & Insurance Sci, 80 Karaoli & Dimitriou Str, Piraeus 18534, Greece; [Eryilmaz, Serkan] Atilim Univ, Dept Ind Engn, TR-06830 Ankara, Turkiyeen_US
dc.description.abstractSuppose that a system is affected by a sequence of random shocks that occur over certain time periods. In this paper we study the discrete censored delta-shock model, delta <= 1 , for which the system fails whenever no shock occurs within a -length time period from the last shock, by supposing that the interarrival times between consecutive shocks are described by a first-order Markov chain (as well as under the binomial shock process, i.e., when the interarrival times between successive shocks have a geometric distribution). Using the Markov chain embedding technique introduced by Chadjiconstantinidis et al. (Adv. Appl. Prob. 32, 2000), we study the joint and marginal distributions of the system's lifetime, the number of shocks, and the number of periods in which no shocks occur, up to the failure of the system. The joint and marginal probability generating functions of these random variables are obtained, and several recursions and exact formulae are given for the evaluation of their probability mass functions and moments. It is shown that the system's lifetime follows a Markov geometric distribution of order (a geometric distribution of order under the binomial setup) and also that it follows a matrix-geometric distribution. Some reliability properties are also given under the binomial shock process, by showing that a shift of the system's lifetime random variable follows a compound geometric distribution. Finally, we introduce a new mixed discrete censored delta -shock model, for which the system fails when no shock occurs within a -length time period from the last shock, or the magnitude of the shock is larger than a given critical threshold . gamma > 0. Similarly, for this mixed model, we study the joint and marginal distributions of the system's lifetime, the number of shocks, and the number of periods in which no shocks occur, up to the failure of the system, under the binomial shock process.en_US
dc.identifier.citation1
dc.identifier.doi10.1017/apr.2022.72
dc.identifier.endpage1170en_US
dc.identifier.issn0001-8678
dc.identifier.issn1475-6064
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85153857623
dc.identifier.startpage1144en_US
dc.identifier.urihttps://doi.org/10.1017/apr.2022.72
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2313
dc.identifier.volume55en_US
dc.identifier.wosWOS:001168005000007
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherCambridge Univ Pressen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCensored delta-shock modelen_US
dc.subjectmixed censored delta-shock modelen_US
dc.subjectMarkov chainen_US
dc.subjectreliabilityen_US
dc.subjectwaiting timeen_US
dc.subjectMarkov chain imbedding techniqueen_US
dc.subjectdiscrete compound geometric distributionen_US
dc.subjectgeometric distribution of order deltaen_US
dc.subjectmatrix-geometric distributionen_US
dc.titleDISTRIBUTIONS OF RANDOM VARIABLES INVOLVED IN DISCRETE CENSORED δ-SHOCK MODELSen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication37862217-5541-47e3-9406-e21aa38e7fdf
relation.isAuthorOfPublication.latestForDiscovery37862217-5541-47e3-9406-e21aa38e7fdf
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections