DISTRIBUTIONS OF RANDOM VARIABLES INVOLVED IN DISCRETE CENSORED δ-SHOCK MODELS

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge Univ Press

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

Suppose that a system is affected by a sequence of random shocks that occur over certain time periods. In this paper we study the discrete censored delta-shock model, delta <= 1 , for which the system fails whenever no shock occurs within a -length time period from the last shock, by supposing that the interarrival times between consecutive shocks are described by a first-order Markov chain (as well as under the binomial shock process, i.e., when the interarrival times between successive shocks have a geometric distribution). Using the Markov chain embedding technique introduced by Chadjiconstantinidis et al. (Adv. Appl. Prob. 32, 2000), we study the joint and marginal distributions of the system's lifetime, the number of shocks, and the number of periods in which no shocks occur, up to the failure of the system. The joint and marginal probability generating functions of these random variables are obtained, and several recursions and exact formulae are given for the evaluation of their probability mass functions and moments. It is shown that the system's lifetime follows a Markov geometric distribution of order (a geometric distribution of order under the binomial setup) and also that it follows a matrix-geometric distribution. Some reliability properties are also given under the binomial shock process, by showing that a shift of the system's lifetime random variable follows a compound geometric distribution. Finally, we introduce a new mixed discrete censored delta -shock model, for which the system fails when no shock occurs within a -length time period from the last shock, or the magnitude of the shock is larger than a given critical threshold . gamma > 0. Similarly, for this mixed model, we study the joint and marginal distributions of the system's lifetime, the number of shocks, and the number of periods in which no shocks occur, up to the failure of the system, under the binomial shock process.

Description

Keywords

Censored delta-shock model, mixed censored delta-shock model, Markov chain, reliability, waiting time, Markov chain imbedding technique, discrete compound geometric distribution, geometric distribution of order delta, matrix-geometric distribution

Turkish CoHE Thesis Center URL

Citation

1

WoS Q

Q3

Scopus Q

Source

Volume

55

Issue

4

Start Page

1144

End Page

1170

Collections