The approximation of all continuous functions on [0,1] by <i>q</i>-Bernstein polynomials in the case <i>q</i> → 1<SUP>+</SUP>
dc.authorscopusid | 35610828900 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:34:21Z | |
dc.date.available | 2024-07-05T14:34:21Z | |
dc.date.issued | 2008 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | Since for q > 1, the q-Bernstein polynomials B-n,B-q(f;.) are not positive linear operators on C[0, 1], their convergence properties are not similar to those in the case 0 < q = 1. It has been known that, in general, B-n,B-qn(f;.) does not approximate f is an element of C[0, 1] if q(n) -> 1(+), n ->infinity, unlike in the case q(n) -> 1(-). In this paper, it is shown that if 0 <= q(n) - 1 = o(n(-1)3(-n)), n -> infinity, then for any f is an element of C[0, 1], we have: B-n,B-qn(f; x) -> f(x) as n -> infinity, uniformly on [ 0,1]. | en_US |
dc.identifier.citation | 3 | |
dc.identifier.doi | 10.1007/s00025-008-0288-2 | |
dc.identifier.endpage | 186 | en_US |
dc.identifier.issn | 1422-6383 | |
dc.identifier.issn | 1420-9012 | |
dc.identifier.issue | 1-2 | en_US |
dc.identifier.scopus | 2-s2.0-49549115731 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 179 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00025-008-0288-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1046 | |
dc.identifier.volume | 52 | en_US |
dc.identifier.wos | WOS:000258456800014 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Springer Basel Ag | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | q-Bernstein polynomials | en_US |
dc.subject | q-integers | en_US |
dc.subject | uniform convergence | en_US |
dc.subject | maximum modulus principle | en_US |
dc.title | The approximation of all continuous functions on [0,1] by <i>q</i>-Bernstein polynomials in the case <i>q</i> → 1<SUP>+</SUP> | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |