The approximation of all continuous functions on [0,1] by <i>q</i>-Bernstein polynomials in the case <i>q</i> → 1<SUP>+</SUP>

dc.authorscopusid35610828900
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:34:21Z
dc.date.available2024-07-05T14:34:21Z
dc.date.issued2008
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractSince for q > 1, the q-Bernstein polynomials B-n,B-q(f;.) are not positive linear operators on C[0, 1], their convergence properties are not similar to those in the case 0 < q = 1. It has been known that, in general, B-n,B-qn(f;.) does not approximate f is an element of C[0, 1] if q(n) -> 1(+), n ->infinity, unlike in the case q(n) -> 1(-). In this paper, it is shown that if 0 <= q(n) - 1 = o(n(-1)3(-n)), n -> infinity, then for any f is an element of C[0, 1], we have: B-n,B-qn(f; x) -> f(x) as n -> infinity, uniformly on [ 0,1].en_US
dc.identifier.citation3
dc.identifier.doi10.1007/s00025-008-0288-2
dc.identifier.endpage186en_US
dc.identifier.issn1422-6383
dc.identifier.issn1420-9012
dc.identifier.issue1-2en_US
dc.identifier.scopus2-s2.0-49549115731
dc.identifier.scopusqualityQ3
dc.identifier.startpage179en_US
dc.identifier.urihttps://doi.org/10.1007/s00025-008-0288-2
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1046
dc.identifier.volume52en_US
dc.identifier.wosWOS:000258456800014
dc.identifier.wosqualityQ1
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherSpringer Basel Agen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectq-Bernstein polynomialsen_US
dc.subjectq-integersen_US
dc.subjectuniform convergenceen_US
dc.subjectmaximum modulus principleen_US
dc.titleThe approximation of all continuous functions on [0,1] by <i>q</i>-Bernstein polynomials in the case <i>q</i> → 1<SUP>+</SUP>en_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections