The Approximation of All Continuous Functions on [0,1] by <i>q</I>-bernstein Polynomials in the Case <i>q</I> → 1<sup>+</Sup>

dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T14:34:21Z
dc.date.available 2024-07-05T14:34:21Z
dc.date.issued 2008
dc.description.abstract Since for q > 1, the q-Bernstein polynomials B-n,B-q(f;.) are not positive linear operators on C[0, 1], their convergence properties are not similar to those in the case 0 < q = 1. It has been known that, in general, B-n,B-qn(f;.) does not approximate f is an element of C[0, 1] if q(n) -> 1(+), n ->infinity, unlike in the case q(n) -> 1(-). In this paper, it is shown that if 0 <= q(n) - 1 = o(n(-1)3(-n)), n -> infinity, then for any f is an element of C[0, 1], we have: B-n,B-qn(f; x) -> f(x) as n -> infinity, uniformly on [ 0,1]. en_US
dc.identifier.doi 10.1007/s00025-008-0288-2
dc.identifier.issn 1422-6383
dc.identifier.issn 1420-9012
dc.identifier.scopus 2-s2.0-49549115731
dc.identifier.uri https://doi.org/10.1007/s00025-008-0288-2
dc.identifier.uri https://hdl.handle.net/20.500.14411/1046
dc.language.iso en en_US
dc.publisher Springer Basel Ag en_US
dc.relation.ispartof Results in Mathematics
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject q-Bernstein polynomials en_US
dc.subject q-integers en_US
dc.subject uniform convergence en_US
dc.subject maximum modulus principle en_US
dc.title The Approximation of All Continuous Functions on [0,1] by <i>q</I>-bernstein Polynomials in the Case <i>q</I> → 1<sup>+</Sup> en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ostrovska, Sofiya
gdc.author.scopusid 35610828900
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 186 en_US
gdc.description.issue 1-2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 179 en_US
gdc.description.volume 52 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2094210705
gdc.identifier.wos WOS:000258456800014
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.6811655E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.007244E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.32
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 3
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections