The approximation of all continuous functions on [0,1] by <i>q</i>-Bernstein polynomials in the case <i>q</i> → 1<SUP>+</SUP>

No Thumbnail Available

Date

2008

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Basel Ag

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

Since for q > 1, the q-Bernstein polynomials B-n,B-q(f;.) are not positive linear operators on C[0, 1], their convergence properties are not similar to those in the case 0 < q = 1. It has been known that, in general, B-n,B-qn(f;.) does not approximate f is an element of C[0, 1] if q(n) -> 1(+), n ->infinity, unlike in the case q(n) -> 1(-). In this paper, it is shown that if 0 <= q(n) - 1 = o(n(-1)3(-n)), n -> infinity, then for any f is an element of C[0, 1], we have: B-n,B-qn(f; x) -> f(x) as n -> infinity, uniformly on [ 0,1].

Description

Keywords

q-Bernstein polynomials, q-integers, uniform convergence, maximum modulus principle

Turkish CoHE Thesis Center URL

Fields of Science

Citation

3

WoS Q

Q1

Scopus Q

Q3

Source

Volume

52

Issue

1-2

Start Page

179

End Page

186

Collections