Some New Variants of Newton's Method

dc.contributor.author Özban,A.Y.
dc.date.accessioned 2024-07-05T15:41:59Z
dc.date.available 2024-07-05T15:41:59Z
dc.date.issued 2004
dc.description.abstract Some new variants of Newton's method based on harmonic mean and midpoint integration rule have been developed and their convergence properties have been discussed. The order of convergence of the proposed methods are three. In addition to numerical tests verifying the theory, a comparison of the results for the proposed methods and some of the existing ones have also been given. © 2004 Elsevier Ltd. All rights reserved. en_US
dc.identifier.doi 10.1016/S0893-9659(04)90104-8
dc.identifier.issn 0893-9659
dc.identifier.scopus 2-s2.0-14544290341
dc.identifier.uri https://doi.org/10.1016/S0893-9659(04)90104-8
dc.identifier.uri https://hdl.handle.net/20.500.14411/3526
dc.language.iso en en_US
dc.publisher Elsevier Ltd en_US
dc.relation.ispartof Applied Mathematics Letters en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Function evaluations en_US
dc.subject Iteration function en_US
dc.subject Newton's method en_US
dc.subject Order of convergence en_US
dc.title Some New Variants of Newton's Method en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 9276702800
gdc.bip.impulseclass C4
gdc.bip.influenceclass C3
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Özban A.Y., Department of Mathematics, Atilim University, TR-06836, Incek-Ankara, Turkey en_US
gdc.description.endpage 682 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 677 en_US
gdc.description.volume 17 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2030284983
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 24.0
gdc.oaire.influence 3.5776473E-8
gdc.oaire.isgreen false
gdc.oaire.keywords Newton's method
gdc.oaire.keywords convergence
gdc.oaire.keywords Order of convergence
gdc.oaire.keywords harmonic mean Newton's method
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords midpoint Newton's method
gdc.oaire.keywords Numerical computation of solutions to single equations
gdc.oaire.keywords Function evaluations
gdc.oaire.keywords Iteration function
gdc.oaire.popularity 5.8164094E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 14.18248175
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 177
gdc.plumx.crossrefcites 104
gdc.plumx.facebookshareslikecount 2
gdc.plumx.mendeley 19
gdc.plumx.scopuscites 236
gdc.scopus.citedcount 236
gdc.virtual.author Özban, Ahmet Yaşar
relation.isAuthorOfPublication 441f0f87-7ece-46f6-b47b-51c64752df12
relation.isAuthorOfPublication.latestForDiscovery 441f0f87-7ece-46f6-b47b-51c64752df12
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections