Green energy generation using membrane technologies based on salinity gradient

dc.authorscopusid35795160600
dc.authorscopusid56413071900
dc.authorscopusid57204055541
dc.authorscopusid57527143500
dc.authorscopusid57566296100
dc.authorscopusid7004128490
dc.contributor.authorGüler,E.
dc.contributor.authorCihanoğlu,A.
dc.contributor.authorAltıok,E.
dc.contributor.authorKaya,T.Z.
dc.contributor.authorEti,M.
dc.contributor.authorKabay,N.
dc.contributor.otherChemical Engineering
dc.date.accessioned2024-07-05T15:50:40Z
dc.date.available2024-07-05T15:50:40Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-tempGüler E., Atılım University, Department of Chemical Engineering, Ankara, Turkey; Cihanoğlu A., Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey; Altıok E., Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey; Kaya T.Z., Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey; Eti M., Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey; Kabay N., Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkeyen_US
dc.description.abstractElectrical energy can be extracted from salinity gradients, often represented by two aqueous solutions with different salinities. This becomes very interesting when sustainable and practical electromembrane processes can be applied to convert the salinity gradient power into electric power. Reverse electrodialysis (RED), in this context, has gained much interest in the last few years. In addition to many operational and design parameters affecting the process output, ion exchange membranes (IEMs) represent core elements in RED. In this chapter, it is aimed to introduce and discuss the current trend of IEMs as well as vital operational parameters and fouling affecting the RED performance. © 2023 Elsevier Inc. All rights reserved.en_US
dc.identifier.citation0
dc.identifier.doi10.1016/B978-0-323-95165-4.00012-4
dc.identifier.endpage370en_US
dc.identifier.isbn978-032395165-4
dc.identifier.isbn978-032395166-1
dc.identifier.scopus2-s2.0-85176289161
dc.identifier.startpage341en_US
dc.identifier.urihttps://doi.org/10.1016/B978-0-323-95165-4.00012-4
dc.identifier.urihttps://hdl.handle.net/20.500.14411/4156
dc.institutionauthorGüler, Enver
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofGreen Membrane Technologies towards Environmental Sustainabilityen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcharacterizationen_US
dc.subjectfoulingen_US
dc.subjectgreen energyen_US
dc.subjection exchange membraneen_US
dc.subjectSalinity gradient energyen_US
dc.titleGreen energy generation using membrane technologies based on salinity gradienten_US
dc.typeBook Parten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationcf7476e1-9efa-4710-a516-dbabb21b6e1a
relation.isAuthorOfPublication.latestForDiscoverycf7476e1-9efa-4710-a516-dbabb21b6e1a
relation.isOrgUnitOfPublicationbebae599-17cc-4f0b-997b-a4164a19b94b
relation.isOrgUnitOfPublication.latestForDiscoverybebae599-17cc-4f0b-997b-a4164a19b94b

Files

Collections