Green Energy Generation Using Membrane Technologies Based on Salinity Gradient

dc.authorscopusid 35795160600
dc.authorscopusid 56413071900
dc.authorscopusid 57204055541
dc.authorscopusid 57527143500
dc.authorscopusid 57566296100
dc.authorscopusid 7004128490
dc.contributor.author Güler,E.
dc.contributor.author Cihanoğlu,A.
dc.contributor.author Altıok,E.
dc.contributor.author Kaya,T.Z.
dc.contributor.author Eti,M.
dc.contributor.author Kabay,N.
dc.contributor.other Chemical Engineering
dc.date.accessioned 2024-07-05T15:50:40Z
dc.date.available 2024-07-05T15:50:40Z
dc.date.issued 2023
dc.department Atılım University en_US
dc.department-temp Güler E., Atılım University, Department of Chemical Engineering, Ankara, Turkey; Cihanoğlu A., Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey; Altıok E., Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey; Kaya T.Z., Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey; Eti M., Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey; Kabay N., Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey en_US
dc.description.abstract Electrical energy can be extracted from salinity gradients, often represented by two aqueous solutions with different salinities. This becomes very interesting when sustainable and practical electromembrane processes can be applied to convert the salinity gradient power into electric power. Reverse electrodialysis (RED), in this context, has gained much interest in the last few years. In addition to many operational and design parameters affecting the process output, ion exchange membranes (IEMs) represent core elements in RED. In this chapter, it is aimed to introduce and discuss the current trend of IEMs as well as vital operational parameters and fouling affecting the RED performance. © 2023 Elsevier Inc. All rights reserved. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/B978-0-323-95165-4.00012-4
dc.identifier.endpage 370 en_US
dc.identifier.isbn 978-032395165-4
dc.identifier.isbn 978-032395166-1
dc.identifier.scopus 2-s2.0-85176289161
dc.identifier.startpage 341 en_US
dc.identifier.uri https://doi.org/10.1016/B978-0-323-95165-4.00012-4
dc.identifier.uri https://hdl.handle.net/20.500.14411/4156
dc.institutionauthor Güler, Enver
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Green Membrane Technologies towards Environmental Sustainability en_US
dc.relation.publicationcategory Kitap Bölümü - Uluslararası en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject characterization en_US
dc.subject fouling en_US
dc.subject green energy en_US
dc.subject ion exchange membrane en_US
dc.subject Salinity gradient energy en_US
dc.title Green Energy Generation Using Membrane Technologies Based on Salinity Gradient en_US
dc.type Book Part en_US
dspace.entity.type Publication
relation.isAuthorOfPublication cf7476e1-9efa-4710-a516-dbabb21b6e1a
relation.isAuthorOfPublication.latestForDiscovery cf7476e1-9efa-4710-a516-dbabb21b6e1a
relation.isOrgUnitOfPublication bebae599-17cc-4f0b-997b-a4164a19b94b
relation.isOrgUnitOfPublication.latestForDiscovery bebae599-17cc-4f0b-997b-a4164a19b94b

Files

Collections