The Use of Artificial Neural Networks in Network Intrusion Detection: a Systematic Review

dc.contributor.author Öney,M.U.
dc.contributor.author Peker,S.
dc.date.accessioned 2024-07-05T15:45:30Z
dc.date.available 2024-07-05T15:45:30Z
dc.date.issued 2019
dc.description.abstract Network intrusion detection is an important research field and artificial neural networks have become increasingly popular in this subject. Despite this, there is a lack of systematic literature review on that issue. In this manner, the aim of this study to examine the studies concerning the application artificial neural network approaches in network intrusion detection to determine the general trends. For this purpose, the articles published within the last decade from 2008 to 2018 were systematically reviewed and 43 articles were retrieved from commonly used databases by using a search strategy. Then, these selected papers were classified by the publication type, the year of publication, the type of the neural network architectures they employed, and the dataset they used. The results indicate that there is a rising trend in the usage of ANN approaches in the network intrusion detection with the gaining popularity of deep neural networks in recent years. Moreover, the KDD'99 dataset is the most commonly used dataset in the studies of network intrusion detection using ANNs. We hope that this paper provides a roadmap to guide future research on network intrusion detection using ANNs. © 2018 IEEE. en_US
dc.identifier.doi 10.1109/IDAP.2018.8620746
dc.identifier.isbn 978-153866878-8
dc.identifier.uri https://doi.org/10.1109/IDAP.2018.8620746
dc.identifier.uri https://hdl.handle.net/20.500.14411/3929
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018 -- 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018 -- 28 September 2018 through 30 September 2018 -- Malatya -- 144523 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject ANNs en_US
dc.subject Literature Review en_US
dc.subject Network Intrusion Detection en_US
dc.subject Neural Networks en_US
dc.subject Systematic Mapping en_US
dc.title The Use of Artificial Neural Networks in Network Intrusion Detection: a Systematic Review en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57207472273
gdc.author.scopusid 57192819774
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Öney M.U., Department of Computer Engineering, Atilim University, Ankara, Turkey; Peker S., Department of Software Engineering, Atilim University, Ankara, Turkey en_US
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1
gdc.identifier.openalex W2912319700
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.8765674E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.9560515E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.91035933
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 5
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 38
gdc.plumx.scopuscites 11
gdc.virtual.author Peker, Serhat
relation.isAuthorOfPublication 70a2c9a7-c94d-4227-be09-c233f93d3b2f
relation.isAuthorOfPublication.latestForDiscovery 70a2c9a7-c94d-4227-be09-c233f93d3b2f
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections