Optimum Design of Steel Braced Frames Considering Dynamic Soil-Structure Interaction

dc.authorid Kazemzadeh Azad, Saeid/0000-0001-9309-607X
dc.authorscopusid 57193253469
dc.authorscopusid 57193753354
dc.contributor.author Bybordiani, Milad
dc.contributor.author Azad, Saeid Kazemzadeh
dc.contributor.other Department of Civil Engineering
dc.date.accessioned 2024-07-05T15:40:07Z
dc.date.available 2024-07-05T15:40:07Z
dc.date.issued 2019
dc.department Atılım University en_US
dc.department-temp [Bybordiani, Milad] Univ Sydney, Sch Civil Engn, Sydney, NSW, Australia; [Azad, Saeid Kazemzadeh] Atilim Univ, Dept Civil Engn, Ankara, Turkey en_US
dc.description Kazemzadeh Azad, Saeid/0000-0001-9309-607X en_US
dc.description.abstract Recent studies on design optimization of steel frames considering soil-structure interaction have focused on static loading scenarios, and limited work has been conducted to address the design optimization under dynamic soil-structure interaction. In the present work, first, a platform is developed to perform optimization of steel frames under seismic loading considering dynamic soil-structure interaction (SSI) in order to quantify the effects of earthquake records on the optimum design. Next, verification of the adopted modeling technique is conducted using comparison of the results with the reference solution counterparts in frequency domain. For time history analyses, records from past events are selected and scaled to a target spectrum using simple scaling approach as well as spectrum matching technique. For sizing of the steel frames, a recently developed metaheuristic optimization algorithm, namely exponential big bang-big crunch optimization method, is employed. To alleviate the computational burden of the optimization process, the metaheuristic algorithm is integrated with the so-called upper bound strategy. Effects of factors such as the building height, presence of soil domain, and the utilized ground motion scaling technique are investigated and discussed. The numerical results obtained based on 5- and 10-story steel braced frame dual systems reveal that, although dynamic SSI reduced the seismic demands to some extent, given the final design pertains to different load combinations, the optimum weight difference is not considerable. en_US
dc.identifier.citationcount 21
dc.identifier.doi 10.1007/s00158-019-02260-4
dc.identifier.endpage 1137 en_US
dc.identifier.issn 1615-147X
dc.identifier.issn 1615-1488
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85064282986
dc.identifier.scopusquality Q1
dc.identifier.startpage 1123 en_US
dc.identifier.uri https://doi.org/10.1007/s00158-019-02260-4
dc.identifier.uri https://hdl.handle.net/20.500.14411/3304
dc.identifier.volume 60 en_US
dc.identifier.wos WOS:000480601400016
dc.identifier.wosquality Q1
dc.institutionauthor Azad, Saeıd Kazemzadeh
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 27
dc.subject Optimization en_US
dc.subject Steel frames en_US
dc.subject Soil-structure interaction en_US
dc.subject Massless foundation en_US
dc.subject Base shear en_US
dc.subject Drift ratio en_US
dc.title Optimum Design of Steel Braced Frames Considering Dynamic Soil-Structure Interaction en_US
dc.type Article en_US
dc.wos.citedbyCount 23
dspace.entity.type Publication
relation.isAuthorOfPublication a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscovery a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isOrgUnitOfPublication 238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication.latestForDiscovery 238c4130-e9ea-4b1c-9dea-772c4a0dad39

Files

Collections