Optimum Design of Steel Braced Frames Considering Dynamic Soil-Structure Interaction

dc.authoridKazemzadeh Azad, Saeid/0000-0001-9309-607X
dc.authorscopusid57193253469
dc.authorscopusid57193753354
dc.contributor.authorBybordiani, Milad
dc.contributor.authorAzad, Saeid Kazemzadeh
dc.contributor.otherDepartment of Civil Engineering
dc.date.accessioned2024-07-05T15:40:07Z
dc.date.available2024-07-05T15:40:07Z
dc.date.issued2019
dc.departmentAtılım Universityen_US
dc.department-temp[Bybordiani, Milad] Univ Sydney, Sch Civil Engn, Sydney, NSW, Australia; [Azad, Saeid Kazemzadeh] Atilim Univ, Dept Civil Engn, Ankara, Turkeyen_US
dc.descriptionKazemzadeh Azad, Saeid/0000-0001-9309-607Xen_US
dc.description.abstractRecent studies on design optimization of steel frames considering soil-structure interaction have focused on static loading scenarios, and limited work has been conducted to address the design optimization under dynamic soil-structure interaction. In the present work, first, a platform is developed to perform optimization of steel frames under seismic loading considering dynamic soil-structure interaction (SSI) in order to quantify the effects of earthquake records on the optimum design. Next, verification of the adopted modeling technique is conducted using comparison of the results with the reference solution counterparts in frequency domain. For time history analyses, records from past events are selected and scaled to a target spectrum using simple scaling approach as well as spectrum matching technique. For sizing of the steel frames, a recently developed metaheuristic optimization algorithm, namely exponential big bang-big crunch optimization method, is employed. To alleviate the computational burden of the optimization process, the metaheuristic algorithm is integrated with the so-called upper bound strategy. Effects of factors such as the building height, presence of soil domain, and the utilized ground motion scaling technique are investigated and discussed. The numerical results obtained based on 5- and 10-story steel braced frame dual systems reveal that, although dynamic SSI reduced the seismic demands to some extent, given the final design pertains to different load combinations, the optimum weight difference is not considerable.en_US
dc.identifier.citationcount21
dc.identifier.doi10.1007/s00158-019-02260-4
dc.identifier.endpage1137en_US
dc.identifier.issn1615-147X
dc.identifier.issn1615-1488
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85064282986
dc.identifier.scopusqualityQ1
dc.identifier.startpage1123en_US
dc.identifier.urihttps://doi.org/10.1007/s00158-019-02260-4
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3304
dc.identifier.volume60en_US
dc.identifier.wosWOS:000480601400016
dc.identifier.wosqualityQ1
dc.institutionauthorAzad, Saeıd Kazemzadeh
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount27
dc.subjectOptimizationen_US
dc.subjectSteel framesen_US
dc.subjectSoil-structure interactionen_US
dc.subjectMassless foundationen_US
dc.subjectBase shearen_US
dc.subjectDrift ratioen_US
dc.titleOptimum Design of Steel Braced Frames Considering Dynamic Soil-Structure Interactionen_US
dc.typeArticleen_US
dc.wos.citedbyCount23
dspace.entity.typePublication
relation.isAuthorOfPublicationa5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscoverya5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isOrgUnitOfPublication238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication.latestForDiscovery238c4130-e9ea-4b1c-9dea-772c4a0dad39

Files

Collections