Optimum Design of Steel Braced Frames Considering Dynamic Soil-Structure Interaction

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Civil Engineering
Civil Engineering Department of Atılım University, this opportunity can be attained by two Master of Science programs (with thesis or non-thesis). These programs are divided into the following subdivisions: 1) Construction Management, 2) Materials of Construction, 3) Geotechnical Engineering, 4) Hydromechanics and Water Resources Engineering, 5) Structural Engineering and Mechanics, and 6) Transportation Engineering. So, you can find among these alternatives, a subdiscipline that focuses on your interests and allows you to work toward your career goals. Civil Engineering Department of Atılım University which has a friendly faculty comprised of members with degrees from renowned international universities, laboratories for both educational and research purposes, and other facilities like computer infrastructure and classrooms well-suited for a good graduate education.

Journal Issue

Events

Abstract

Recent studies on design optimization of steel frames considering soil-structure interaction have focused on static loading scenarios, and limited work has been conducted to address the design optimization under dynamic soil-structure interaction. In the present work, first, a platform is developed to perform optimization of steel frames under seismic loading considering dynamic soil-structure interaction (SSI) in order to quantify the effects of earthquake records on the optimum design. Next, verification of the adopted modeling technique is conducted using comparison of the results with the reference solution counterparts in frequency domain. For time history analyses, records from past events are selected and scaled to a target spectrum using simple scaling approach as well as spectrum matching technique. For sizing of the steel frames, a recently developed metaheuristic optimization algorithm, namely exponential big bang-big crunch optimization method, is employed. To alleviate the computational burden of the optimization process, the metaheuristic algorithm is integrated with the so-called upper bound strategy. Effects of factors such as the building height, presence of soil domain, and the utilized ground motion scaling technique are investigated and discussed. The numerical results obtained based on 5- and 10-story steel braced frame dual systems reveal that, although dynamic SSI reduced the seismic demands to some extent, given the final design pertains to different load combinations, the optimum weight difference is not considerable.

Description

Kazemzadeh Azad, Saeid/0000-0001-9309-607X

Keywords

Optimization, Steel frames, Soil-structure interaction, Massless foundation, Base shear, Drift ratio

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1

Source

Volume

60

Issue

3

Start Page

1123

End Page

1137

Collections