Tripled Coincidence Point Theorems for Nonlinear Contractions in Partially Ordered Metric Spaces

dc.contributor.author Choudhury,B.S.
dc.contributor.author Karapnar,E.
dc.contributor.author Kundu,A.
dc.date.accessioned 2024-07-05T15:43:49Z
dc.date.available 2024-07-05T15:43:49Z
dc.date.issued 2012
dc.description.abstract Tripled fixed points are extensions of the idea of coupled fixed points introduced in a recent paper by Berinde and Borcut, 2011. Here using a separate methodology we extend this result to a triple coincidence point theorem in partially ordered metric spaces. We have defined several concepts pertaining to our results. The main results have several corollaries and an illustrative example. The example shows that the extension proved here is actual and also the main theorem properly contains all its corollaries. Copyright © 2012 Binayak S. Choudhury et al. en_US
dc.identifier.doi 10.1155/2012/329298
dc.identifier.issn 1687-0425
dc.identifier.issn 0161-1712
dc.identifier.scopus 2-s2.0-84864949502
dc.identifier.uri https://doi.org/10.1155/2012/329298
dc.identifier.uri https://hdl.handle.net/20.500.14411/3666
dc.language.iso en en_US
dc.relation.ispartof International Journal of Mathematics and Mathematical Sciences en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Tripled Coincidence Point Theorems for Nonlinear Contractions in Partially Ordered Metric Spaces en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 9234341800
gdc.author.scopusid 16678995500
gdc.author.scopusid 36154559100
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Choudhury B.S., Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah 711103, India; Karapnar E., Department of Mathematics, Atilim University, Incek 06836, Ankara, Turkey; Kundu A., Department of Mathematics, Siliguri Institute of Technology, Darjeeling 734009, India en_US
gdc.description.endpage 14
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1
gdc.description.volume 2012 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W1986003720
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 3.2474743E-9
gdc.oaire.isgreen false
gdc.oaire.keywords QA1-939
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Fixed-point and coincidence theorems (topological aspects)
gdc.oaire.keywords Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces
gdc.oaire.keywords partially ordered metric spaces
gdc.oaire.keywords triple coincidence point theorem
gdc.oaire.popularity 7.808266E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 4.10790249
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 14
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 21
gdc.scopus.citedcount 21
gdc.virtual.author Karapınar, Erdal
relation.isAuthorOfPublication 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isAuthorOfPublication.latestForDiscovery 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections