Plagiarism Detection in Software Using Efficient String Matching

dc.authorscopusid55247484300
dc.authorscopusid23097406900
dc.authorscopusid56962766700
dc.authorscopusid57191422092
dc.contributor.authorPandey,K.L.
dc.contributor.authorMısra, Sanjay
dc.contributor.authorAgarwal,S.
dc.contributor.authorMisra,S.
dc.contributor.authorPrasad,R.
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:43:51Z
dc.date.available2024-07-05T15:43:51Z
dc.date.issued2012
dc.departmentAtılım Universityen_US
dc.department-tempPandey K.L., Ewing Christian College, Allahabad, India; Agarwal S., Motilal Nehru National Institute of Technology, Allahabad, India; Misra S., Atilim University, Ankara, Turkey; Prasad R., Ajay Kumar Garg Engineering College, Ghaziabad, Indiaen_US
dc.descriptionUniversidade Federal da Bahia (UFBA); Universidade Federal do Reconcavo da Bahia (UFRB); Universidade Estadual de Feira de Santana (UEFS); University of Perugia; University of Basilicata (UB)en_US
dc.description.abstractString matching refers to the problem of finding occurrence(s) of a pattern string within another string or body of a text. It plays a vital role in plagiarism detection in software codes, where it is required to identify similar program in a large populations. String matching has been used as a tool in a software metrics, which is used to measure the quality of software development process. In the recent years, many algorithms exist for solving the string matching problem. Among them, Berry-Ravindran algorithm was found to be fairly efficient. Further refinement of this algorithm is made in TVSBS and SSABS algorithms. However, these algorithms do not give the best possible shift in the search phase. In this paper, we propose an algorithm which gives the best possible shift in the search phase and is faster than the previously known algorithms. This algorithm behaves like Berry-Ravindran in the worst case. Further extension of this algorithm has been made for parameterized string matching which is able to detect plagiarism in a software code. © 2012 Springer-Verlag.en_US
dc.identifier.citation1
dc.identifier.doi10.1007/978-3-642-31128-4_11
dc.identifier.endpage156en_US
dc.identifier.isbn978-364231127-7
dc.identifier.issn1611-3349
dc.identifier.issuePART 4en_US
dc.identifier.scopus2-s2.0-84863930600
dc.identifier.startpage147en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-642-31128-4_11
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3677
dc.identifier.volume7336 LNCSen_US
dc.language.isoenen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -- 12th International Conference on Computational Science and Its Applications, ICCSA 2012 -- 18 June 2012 through 21 June 2012 -- Salvador de Bahia -- 90945en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbad character shiften_US
dc.subjectparameterized matching and RGFen_US
dc.subjectplagiarism detectionen_US
dc.subjectString matchingen_US
dc.titlePlagiarism Detection in Software Using Efficient String Matchingen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections