Skeletonization-based beam finite element models for stochastic bicontinuous materials: Application to simulations of nanoporous gold

dc.authoridBargmann, Swantje/0000-0001-7403-7066
dc.authoridSoyarslan, Celal/0000-0003-1029-237X
dc.authorwosidBargmann, Swantje/U-4961-2019
dc.authorwosidSoyarslan, Celal/O-5139-2014
dc.contributor.authorSoyarslan, Celal
dc.contributor.authorArgeso, Hakan
dc.contributor.authorBorgmann, Swantje
dc.contributor.otherManufacturing Engineering
dc.contributor.otherDepartment of Mechatronics Engineering
dc.date.accessioned2024-07-05T15:27:26Z
dc.date.available2024-07-05T15:27:26Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-temp[Soyarslan, Celal; Borgmann, Swantje] Univ Wuppertal, Sch Mech Engn & Safety Engn, Chair Solid Mech, D-42119 Wuppertal, Germany; [Argeso, Hakan] Atilim Univ, Dept Mfg Engn, TR-06830 Ankara, Turkeyen_US
dc.descriptionBargmann, Swantje/0000-0001-7403-7066; Soyarslan, Celal/0000-0003-1029-237Xen_US
dc.description.abstractAn efficient representative volume element generation strategy is developed in modeling nanoporous materials. It uses periodic 3D beam finite element (FE) models derived from skeletonization of spinodal-like stochastic microstructures produced by a leveled random field. To mimic stiffening with agglomeration of the mass at junctions, an increased Young's modulus is assigned to the elements within the junction zone. The effective Young's modulus, Poisson's ratio, and universal anisotropy index are computed. A good agreement of the Young's modulus predictions with those obtained from experimental results for phase volume fractions 0.20 < phi(B) < 0.50 is observed. Moreover, the elastic anisotropy index of the generated beam networks shows sufficient proximity to isotropy. Finally, it is demonstrated that, as compared to the simulation statistics of voxel-FE models, for the beam-FE models over 500-fold computational acceleration with 250-fold less memory requirement is provided.en_US
dc.description.sponsorshipGerman Research Foundation (DFG) [SFB 986 "M<SUP>3]en_US
dc.description.sponsorshipWe gratefully acknowledge financial support from the German Research Foundation (DFG) via SFB 986 "M<SUP>3</SUP>", sub-project B6.en_US
dc.identifier.citation13
dc.identifier.doi10.1557/jmr.2018.244
dc.identifier.endpage3382en_US
dc.identifier.issn0884-2914
dc.identifier.issn2044-5326
dc.identifier.issue20en_US
dc.identifier.startpage3371en_US
dc.identifier.urihttps://doi.org/10.1557/jmr.2018.244
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2648
dc.identifier.volume33en_US
dc.identifier.wosWOS:000452651700003
dc.identifier.wosqualityQ3
dc.institutionauthorArgeşo, Ahmet Hakan
dc.institutionauthorSoyarslan, Celal
dc.language.isoenen_US
dc.publisherCambridge Univ Pressen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleSkeletonization-based beam finite element models for stochastic bicontinuous materials: Application to simulations of nanoporous golden_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication6b649558-6367-4f53-b5e5-80fe8187e07f
relation.isAuthorOfPublicationaf08017a-f481-403c-8a1b-4389eb897ad9
relation.isAuthorOfPublication.latestForDiscovery6b649558-6367-4f53-b5e5-80fe8187e07f
relation.isOrgUnitOfPublication9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublicatione2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscovery9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections