Skeletonization-based beam finite element models for stochastic bicontinuous materials: Application to simulations of nanoporous gold

dc.authorid Bargmann, Swantje/0000-0001-7403-7066
dc.authorid Soyarslan, Celal/0000-0003-1029-237X
dc.authorwosid Bargmann, Swantje/U-4961-2019
dc.authorwosid Soyarslan, Celal/O-5139-2014
dc.contributor.author Soyarslan, Celal
dc.contributor.author Argeso, Hakan
dc.contributor.author Borgmann, Swantje
dc.contributor.other Manufacturing Engineering
dc.contributor.other Department of Mechatronics Engineering
dc.date.accessioned 2024-07-05T15:27:26Z
dc.date.available 2024-07-05T15:27:26Z
dc.date.issued 2018
dc.department Atılım University en_US
dc.department-temp [Soyarslan, Celal; Borgmann, Swantje] Univ Wuppertal, Sch Mech Engn & Safety Engn, Chair Solid Mech, D-42119 Wuppertal, Germany; [Argeso, Hakan] Atilim Univ, Dept Mfg Engn, TR-06830 Ankara, Turkey en_US
dc.description Bargmann, Swantje/0000-0001-7403-7066; Soyarslan, Celal/0000-0003-1029-237X en_US
dc.description.abstract An efficient representative volume element generation strategy is developed in modeling nanoporous materials. It uses periodic 3D beam finite element (FE) models derived from skeletonization of spinodal-like stochastic microstructures produced by a leveled random field. To mimic stiffening with agglomeration of the mass at junctions, an increased Young's modulus is assigned to the elements within the junction zone. The effective Young's modulus, Poisson's ratio, and universal anisotropy index are computed. A good agreement of the Young's modulus predictions with those obtained from experimental results for phase volume fractions 0.20 < phi(B) < 0.50 is observed. Moreover, the elastic anisotropy index of the generated beam networks shows sufficient proximity to isotropy. Finally, it is demonstrated that, as compared to the simulation statistics of voxel-FE models, for the beam-FE models over 500-fold computational acceleration with 250-fold less memory requirement is provided. en_US
dc.description.sponsorship German Research Foundation (DFG) [SFB 986 "M<SUP>3] en_US
dc.description.sponsorship We gratefully acknowledge financial support from the German Research Foundation (DFG) via SFB 986 "M<SUP>3</SUP>", sub-project B6. en_US
dc.identifier.citationcount 13
dc.identifier.doi 10.1557/jmr.2018.244
dc.identifier.endpage 3382 en_US
dc.identifier.issn 0884-2914
dc.identifier.issn 2044-5326
dc.identifier.issue 20 en_US
dc.identifier.startpage 3371 en_US
dc.identifier.uri https://doi.org/10.1557/jmr.2018.244
dc.identifier.uri https://hdl.handle.net/20.500.14411/2648
dc.identifier.volume 33 en_US
dc.identifier.wos WOS:000452651700003
dc.identifier.wosquality Q3
dc.institutionauthor Argeşo, Ahmet Hakan
dc.institutionauthor Soyarslan, Celal
dc.language.iso en en_US
dc.publisher Cambridge Univ Press en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Skeletonization-based beam finite element models for stochastic bicontinuous materials: Application to simulations of nanoporous gold en_US
dc.type Article en_US
dc.wos.citedbyCount 12
dspace.entity.type Publication
relation.isAuthorOfPublication 6b649558-6367-4f53-b5e5-80fe8187e07f
relation.isAuthorOfPublication af08017a-f481-403c-8a1b-4389eb897ad9
relation.isAuthorOfPublication.latestForDiscovery 6b649558-6367-4f53-b5e5-80fe8187e07f
relation.isOrgUnitOfPublication 9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscovery 9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections