Skeletonization-based beam finite element models for stochastic bicontinuous materials: Application to simulations of nanoporous gold
| dc.contributor.author | Soyarslan, Celal | |
| dc.contributor.author | Argeso, Hakan | |
| dc.contributor.author | Borgmann, Swantje | |
| dc.contributor.other | Manufacturing Engineering | |
| dc.contributor.other | Department of Mechatronics Engineering | |
| dc.contributor.other | 06. School Of Engineering | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:27:26Z | |
| dc.date.available | 2024-07-05T15:27:26Z | |
| dc.date.issued | 2018 | |
| dc.description | Bargmann, Swantje/0000-0001-7403-7066; Soyarslan, Celal/0000-0003-1029-237X | en_US |
| dc.description.abstract | An efficient representative volume element generation strategy is developed in modeling nanoporous materials. It uses periodic 3D beam finite element (FE) models derived from skeletonization of spinodal-like stochastic microstructures produced by a leveled random field. To mimic stiffening with agglomeration of the mass at junctions, an increased Young's modulus is assigned to the elements within the junction zone. The effective Young's modulus, Poisson's ratio, and universal anisotropy index are computed. A good agreement of the Young's modulus predictions with those obtained from experimental results for phase volume fractions 0.20 < phi(B) < 0.50 is observed. Moreover, the elastic anisotropy index of the generated beam networks shows sufficient proximity to isotropy. Finally, it is demonstrated that, as compared to the simulation statistics of voxel-FE models, for the beam-FE models over 500-fold computational acceleration with 250-fold less memory requirement is provided. | en_US |
| dc.description.sponsorship | German Research Foundation (DFG) [SFB 986 "M<SUP>3] | en_US |
| dc.description.sponsorship | We gratefully acknowledge financial support from the German Research Foundation (DFG) via SFB 986 "M<SUP>3</SUP>", sub-project B6. | en_US |
| dc.identifier.doi | 10.1557/jmr.2018.244 | |
| dc.identifier.issn | 0884-2914 | |
| dc.identifier.issn | 2044-5326 | |
| dc.identifier.uri | https://doi.org/10.1557/jmr.2018.244 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/2648 | |
| dc.language.iso | en | en_US |
| dc.publisher | Cambridge Univ Press | en_US |
| dc.relation.ispartof | Journal of Materials Research | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | [No Keyword Available] | en_US |
| dc.title | Skeletonization-based beam finite element models for stochastic bicontinuous materials: Application to simulations of nanoporous gold | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Bargmann, Swantje/0000-0001-7403-7066 | |
| gdc.author.id | Soyarslan, Celal/0000-0003-1029-237X | |
| gdc.author.institutional | Argeşo, Ahmet Hakan | |
| gdc.author.institutional | Soyarslan, Celal | |
| gdc.author.wosid | Bargmann, Swantje/U-4961-2019 | |
| gdc.author.wosid | Soyarslan, Celal/O-5139-2014 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Soyarslan, Celal; Borgmann, Swantje] Univ Wuppertal, Sch Mech Engn & Safety Engn, Chair Solid Mech, D-42119 Wuppertal, Germany; [Argeso, Hakan] Atilim Univ, Dept Mfg Engn, TR-06830 Ankara, Turkey | en_US |
| gdc.description.endpage | 3382 | en_US |
| gdc.description.issue | 20 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 3371 | en_US |
| gdc.description.volume | 33 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W2883867296 | |
| gdc.identifier.wos | WOS:000452651700003 | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 10.0 | |
| gdc.oaire.influence | 3.026189E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 6.4692682E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0210 nano-technology | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.881 | |
| gdc.openalex.normalizedpercentile | 0.65 | |
| gdc.opencitations.count | 12 | |
| gdc.plumx.crossrefcites | 7 | |
| gdc.plumx.mendeley | 22 | |
| gdc.plumx.scopuscites | 12 | |
| gdc.wos.citedcount | 12 | |
| relation.isAuthorOfPublication | 6b649558-6367-4f53-b5e5-80fe8187e07f | |
| relation.isAuthorOfPublication | af08017a-f481-403c-8a1b-4389eb897ad9 | |
| relation.isAuthorOfPublication.latestForDiscovery | 6b649558-6367-4f53-b5e5-80fe8187e07f | |
| relation.isOrgUnitOfPublication | 9804a563-7f37-4a61-92b1-e24b3f0d8418 | |
| relation.isOrgUnitOfPublication | e2a6d0b1-378e-4532-82b1-d17cabc56744 | |
| relation.isOrgUnitOfPublication | 4abda634-67fd-417f-bee6-59c29fc99997 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 9804a563-7f37-4a61-92b1-e24b3f0d8418 |