A Computationally Efficient Method for Hybrid Eeg-Fnirs Bci Based on the Pearson Correlation

dc.authorid Mishra, Deepti/0000-0001-5144-3811
dc.authorid Khan, Muhammad/0000-0002-9195-3477
dc.authorscopusid 57218948439
dc.authorscopusid 57209876827
dc.authorscopusid 15730011900
dc.authorwosid Mishra, Deepti/AAZ-1322-2020
dc.authorwosid Khan, Muhammad/N-5478-2016
dc.contributor.author Hasan, Mustafa A. H.
dc.contributor.author Khan, Muhammad U.
dc.contributor.author Mishra, Deepti
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:39:28Z
dc.date.available 2024-07-05T15:39:28Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Hasan, Mustafa A. H.; Khan, Muhammad U.] Atilim Univ, Dept Mechatron Engn, Ankara, Turkey; [Mishra, Deepti] Norwegian Univ Sci & Technol NTNU, Dept Comp Sci, Gjovik, Norway en_US
dc.description Mishra, Deepti/0000-0001-5144-3811; Khan, Muhammad/0000-0002-9195-3477 en_US
dc.description.abstract A hybrid brain computer interface (BCI) system considered here is a combination of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). EEG-fNIRS signals are simultaneously recorded to achieve high motor imagery task classification. This integration helps to achieve better system performance, but at the cost of an increase in system complexity and computational time. In hybrid BCI studies, channel selection is recognized as the key element that directly affects the system's performance. In this paper, we propose a novel channel selection approach using the Pearson product-moment correlation coefficient, where only highly correlated channels are selected from each hemisphere. Then, four different statistical features are extracted, and their different combinations are used for the classification through KNN and Tree classifiers. As far as we know, there is no report available that explored the Pearson product-moment correlation coefficient for hybrid EEG-fNIRS BCI channel selection. The results demonstrate that our hybrid system significantly reduces computational burden while achieving a classification accuracy with high reliability comparable to the existing literature. en_US
dc.identifier.citationcount 20
dc.identifier.doi 10.1155/2020/1838140
dc.identifier.issn 2314-6133
dc.identifier.issn 2314-6141
dc.identifier.pmid 32923476
dc.identifier.scopus 2-s2.0-85090872084
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1155/2020/1838140
dc.identifier.uri https://hdl.handle.net/20.500.14411/3229
dc.identifier.volume 2020 en_US
dc.identifier.wos WOS:000567854000003
dc.institutionauthor Mıshra, Deepti
dc.language.iso en en_US
dc.publisher Hindawi Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 34
dc.subject [No Keyword Available] en_US
dc.title A Computationally Efficient Method for Hybrid Eeg-Fnirs Bci Based on the Pearson Correlation en_US
dc.type Article en_US
dc.wos.citedbyCount 29
dspace.entity.type Publication
relation.isAuthorOfPublication b675e894-7114-4e7c-8f17-24d8e0f07ca4
relation.isAuthorOfPublication.latestForDiscovery b675e894-7114-4e7c-8f17-24d8e0f07ca4
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections