A Computationally Efficient Method for Hybrid Eeg-Fnirs Bci Based on the Pearson Correlation

dc.contributor.author Hasan, Mustafa A. H.
dc.contributor.author Khan, Muhammad U.
dc.contributor.author Mishra, Deepti
dc.date.accessioned 2024-07-05T15:39:28Z
dc.date.available 2024-07-05T15:39:28Z
dc.date.issued 2020
dc.description Mishra, Deepti/0000-0001-5144-3811; Khan, Muhammad/0000-0002-9195-3477 en_US
dc.description.abstract A hybrid brain computer interface (BCI) system considered here is a combination of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). EEG-fNIRS signals are simultaneously recorded to achieve high motor imagery task classification. This integration helps to achieve better system performance, but at the cost of an increase in system complexity and computational time. In hybrid BCI studies, channel selection is recognized as the key element that directly affects the system's performance. In this paper, we propose a novel channel selection approach using the Pearson product-moment correlation coefficient, where only highly correlated channels are selected from each hemisphere. Then, four different statistical features are extracted, and their different combinations are used for the classification through KNN and Tree classifiers. As far as we know, there is no report available that explored the Pearson product-moment correlation coefficient for hybrid EEG-fNIRS BCI channel selection. The results demonstrate that our hybrid system significantly reduces computational burden while achieving a classification accuracy with high reliability comparable to the existing literature. en_US
dc.identifier.doi 10.1155/2020/1838140
dc.identifier.issn 2314-6133
dc.identifier.issn 2314-6141
dc.identifier.scopus 2-s2.0-85090872084
dc.identifier.uri https://doi.org/10.1155/2020/1838140
dc.identifier.uri https://hdl.handle.net/20.500.14411/3229
dc.language.iso en en_US
dc.publisher Hindawi Ltd en_US
dc.relation.ispartof BioMed Research International
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject [No Keyword Available] en_US
dc.title A Computationally Efficient Method for Hybrid Eeg-Fnirs Bci Based on the Pearson Correlation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Mishra, Deepti/0000-0001-5144-3811
gdc.author.id Khan, Muhammad/0000-0002-9195-3477
gdc.author.scopusid 57218948439
gdc.author.scopusid 57209876827
gdc.author.scopusid 15730011900
gdc.author.wosid Mishra, Deepti/AAZ-1322-2020
gdc.author.wosid Khan, Muhammad/N-5478-2016
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Hasan, Mustafa A. H.; Khan, Muhammad U.] Atilim Univ, Dept Mechatron Engn, Ankara, Turkey; [Mishra, Deepti] Norwegian Univ Sci & Technol NTNU, Dept Comp Sci, Gjovik, Norway en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 2020 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3061027672
gdc.identifier.pmid 32923476
gdc.identifier.wos WOS:000567854000003
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 17.0
gdc.oaire.influence 3.917902E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Spectroscopy, Near-Infrared
gdc.oaire.keywords Brain-Computer Interfaces
gdc.oaire.keywords Motor Cortex
gdc.oaire.keywords Humans
gdc.oaire.keywords Reproducibility of Results
gdc.oaire.keywords Electroencephalography
gdc.oaire.keywords Psychomotor Performance
gdc.oaire.keywords Research Article
gdc.oaire.popularity 2.7670417E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.collaboration International
gdc.openalex.fwci 2.76157588
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 29
gdc.plumx.crossrefcites 28
gdc.plumx.mendeley 65
gdc.plumx.pubmedcites 18
gdc.plumx.scopuscites 38
gdc.scopus.citedcount 38
gdc.virtual.author Mıshra, Deepti
gdc.wos.citedcount 31
relation.isAuthorOfPublication b675e894-7114-4e7c-8f17-24d8e0f07ca4
relation.isAuthorOfPublication.latestForDiscovery b675e894-7114-4e7c-8f17-24d8e0f07ca4
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections