A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation

dc.authoridMishra, Deepti/0000-0001-5144-3811
dc.authoridKhan, Muhammad/0000-0002-9195-3477
dc.authorscopusid57218948439
dc.authorscopusid57209876827
dc.authorscopusid15730011900
dc.authorwosidMishra, Deepti/AAZ-1322-2020
dc.authorwosidKhan, Muhammad/N-5478-2016
dc.contributor.authorHasan, Mustafa A. H.
dc.contributor.authorKhan, Muhammad U.
dc.contributor.authorMishra, Deepti
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:39:28Z
dc.date.available2024-07-05T15:39:28Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Hasan, Mustafa A. H.; Khan, Muhammad U.] Atilim Univ, Dept Mechatron Engn, Ankara, Turkey; [Mishra, Deepti] Norwegian Univ Sci & Technol NTNU, Dept Comp Sci, Gjovik, Norwayen_US
dc.descriptionMishra, Deepti/0000-0001-5144-3811; Khan, Muhammad/0000-0002-9195-3477en_US
dc.description.abstractA hybrid brain computer interface (BCI) system considered here is a combination of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). EEG-fNIRS signals are simultaneously recorded to achieve high motor imagery task classification. This integration helps to achieve better system performance, but at the cost of an increase in system complexity and computational time. In hybrid BCI studies, channel selection is recognized as the key element that directly affects the system's performance. In this paper, we propose a novel channel selection approach using the Pearson product-moment correlation coefficient, where only highly correlated channels are selected from each hemisphere. Then, four different statistical features are extracted, and their different combinations are used for the classification through KNN and Tree classifiers. As far as we know, there is no report available that explored the Pearson product-moment correlation coefficient for hybrid EEG-fNIRS BCI channel selection. The results demonstrate that our hybrid system significantly reduces computational burden while achieving a classification accuracy with high reliability comparable to the existing literature.en_US
dc.identifier.citation20
dc.identifier.doi10.1155/2020/1838140
dc.identifier.issn2314-6133
dc.identifier.issn2314-6141
dc.identifier.pmid32923476
dc.identifier.scopus2-s2.0-85090872084
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1155/2020/1838140
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3229
dc.identifier.volume2020en_US
dc.identifier.wosWOS:000567854000003
dc.institutionauthorMıshra, Deepti
dc.language.isoenen_US
dc.publisherHindawi Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleA Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb675e894-7114-4e7c-8f17-24d8e0f07ca4
relation.isAuthorOfPublication.latestForDiscoveryb675e894-7114-4e7c-8f17-24d8e0f07ca4
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections