SYNTHESIS OF TiO<sub>2</sub> NANOSTRUCTURES VIA HYDROTHERMAL METHOD

No Thumbnail Available

Date

2015

Authors

Park, Jongee
Agartan, Lutfi
Park, Jongee
Ozturk, Abdullah

Journal Title

Journal ISSN

Volume Title

Publisher

John Wiley & Sons inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

Titania (TiO2) nanostructures were produced via hydrothermal method using amorphous TiO2 powders synthesized by the sol-gel precipitation process. The hydrothermal system was isolated from the environment and hydrothermal reactions were allowed to execute at 130 degrees C for 36 h at autogeneous pressure, and at a stirring rate of 250 rpm. Scanning electron microscopy (SEM) analysis revealed that TiO2 nanofibers formed instead of nanotubes upon utilization of amorphous TiO2 precursor. After hydrothermal synthesis, the powders were acid treated by HCl several times. X-ray diffraction (XRD) analysis identified that the synthesized powders were Na-titanate and remained Na-titanate even after subjecting to acidic treatments several times. The photocatalytic performance of the powders was evaluated by degradation of methylene blue (MB) solution in UV illumination. Results were compared with nanotubes which were synthesized previously using P25 commercial titania powder and have shown that TiO2 in tubular structure offers better photocatalytic performance for the degradation of MB solution under UV illumination as compared to fiber-like structure.

Description

Park, Jongee/0000-0003-1415-6906; Erdogan, Nursev/0000-0001-6891-7964; Agartan, Lutfi/0000-0002-5850-4661

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

2

WoS Q

N/A

Scopus Q

Q4

Source

Conference and Exhibition on Materials Science and Technology (MS and T) -- OCT 12-16, 2014 -- Pittsburgh, PA

Volume

253

Issue

Start Page

177

End Page

186

Collections