Physical properties of the Bi<sub>1.5</sub>Zn<sub>0.92-2<i>x</i></sub>Hf<i><sub>x</sub></i>Nb<sub>1.5</sub>O<sub>6.92</sub> solid solutions

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The Hf doping effect on the structural, compositional, optical, electrical and dielectric properties of the bismuth-zinc-niobium oxide pyrochlore ceramics is explored by means of scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible light spectroscopy in the wavelength range of 200-1100 nm, temperature dependent electrical resistivity measurements in the range of 300-460 K and dielectric spectroscopy in the frequency range of 0.1-1.0 GHz. The optimum solubility limit in the Bi1.5Zn0.92-2xHfxNb1.5O6.92 solid solution is observed for the Hf content of 0.06. Increasing the Hf content from 0.03 to 0.06 decreased the room temperature, lattice constant, strain, dislocation density, optical energy band gap and electrical resistivity. It also increased the crystallite size and the dielectric constant. The energy band gap of the pure BZN (3.30 eV) decreased to 2.21 and reached 2.10 eV as the Hf content increased from 0.03 to 0.06. This behavior of the BZN suggests its suitability for optical applications of the visible region of light like photovoltaic devices. In addition, the remarkable increase in the dielectric constant from 258 to 280 and 456 nominates the Hf doped pyrochlore for passive mode operation devices like microwave capacitors. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

Electron microscopy, Powder metallurgy, Ceramics, X-ray scattering

Turkish CoHE Thesis Center URL

Citation

6

WoS Q

Q1

Scopus Q

Source

Volume

42

Issue

2

Start Page

3372

End Page

3379

Collections